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Abstract: Eulerian finite strain of an elastically isotropic body is defined using the expansion of
squared length and the post-compression state as reference. The key to deriving second-, third- and
fourth-order Birch–Murnaghan equations-of-state (EOSs) is not requiring a differential to describe
the dimensions of a body owing to isotropic, uniform, and finite change in length and, therefore,
volume. Truncation of higher orders of finite strain to express the Helmholtz free energy is not equal
to ignoring higher-order pressure derivatives of the bulk modulus as zero. To better understand
the Eulerian scheme, finite strain is defined by taking the pre-compressed state as the reference
and EOSs are derived in both the Lagrangian and Eulerian schemes. In the Lagrangian scheme,
pressure increases less significantly upon compression than the Eulerian scheme. Different Eulerian
strains are defined by expansion of linear and cubed length and the first- and third-power Eulerian
EOSs are derived in these schemes. Fitting analysis of pressure-scale-free data using these equations
indicates that the Lagrangian scheme is inappropriate to describe P-V-T relations of MgO, whereas
three Eulerian EOSs including the Birch–Murnaghan EOS have equivalent significance.

Keywords: high-pressure; compression; equation of state; finite strain; Eulerian scheme;
Lagrangian scheme

1. Introduction

Density distributions are one of the most fundamental properties to describe planetary interiors.
Materials within planetary interiors are under high pressure and, therefore, have higher densities
than under ambient conditions. Material density measurements using high-pressure experimental
techniques have a limited pressure range and obtained pressure-density data must often be extrapolated
to higher pressures. For this procedure, it is necessary to fit available experimental data to a certain
formula, which is referred to as the “equation of state” (EOS).

Various EOS formulas have been proposed. Among them, the third-order Birch–Murnaghan
EOS is the most frequently used. This EOS is constructed on the basis of finite elastic strain theory
in the Eulerian scheme. When strains are infinitesimal, the dimensions of a body decrease linearly
with pressure. However, this situation is not the case when strains are finite because matter becomes
increasingly incompressible with pressure. A theory to treat this phenomenon is, therefore, required:
the finite elastic strain theory. The Eulerian scheme describes compression using the post-compression
state as reference. In contrast, the other scheme, namely, the Lagrangian scheme describes compression
using the pre-compressed state as reference.
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Historically, finite elastic strain in the Euler scheme was treated by Murnaghan [1] who introduced
Eulerian finite strain (see Equation (9)) and expressed pressure as a quadratic function of Eulerian
finite strain. Birch [2] extended the theory of Murnaghan [1] to derive a prototype of the EOS, which is
referred to as the Birch–Murnaghan EOS. They proposed an EOS using tensors in three dimensions,
but other simpler arguments are available.

Poirier [3] plainly derived the Eulerian finite strain and Birch–Murnaghan EOS starting from the
infinitesimal length squared with tensors in the three-dimensional space. However, if we ignore elastic
anisotropy for matter compressed uniformly, there is no need to use a tensor or any special reason
to start from infinitesimal length squared. Anderson [4] also derived the Eulerian finite strain and
Birch–Murnaghan EOS. His derivation is, however, not easy to follow, either.

This article presents a more simple derivation of Eulerian finite strain and the Birch–Murnaghan
EOS so that its essence can be easily understood. For comparison, other EOSs are constructed based on
the Lagrangian scheme and other definitions of finite strain, and the usefulness and applicability of the
Birch–Murnaghan EOS is discussed. Because we treat isothermal EOS’s in this article, all differentiation
is carried out at constant temperature. A partial derivative of a quantity Y with respect to some
parameter X at constant temperature is, therefore, simply referred to as a X derivative of Y.

2. Derivations of the Birch–Murnaghan Equation of State (EOS)

2.1. Eulerian Finite Strain

The foundation of the Birch-Murnaghan EOS is Eulerian finite strain, and we therefore begin with
its introduction. An important aspect of the Eulerian scheme is that the reference is defined by the
post-compression state, whereas the Lagrangian scheme uses the pre-compression state. A second
important point is that changes are expanded in squared length before and after compression.

Let us consider a cubic body with edge length X0. Its volume is accordingly V0 = X3
0. This cube is

uniformly compressed to edge length X and accordingly to a volume of V = X3 (Figure 1). The edge
length before compression is expressed by the reference length and length change, or displacement
u, as:

X0 = X − u (1)
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Because of compression, u < 0.
As mentioned, the change in squared edge length by compression is expanded as:

X2
−X2

0 = X2
− (X − u)2 = 2Xu− u2

X2
0 −X2 = u2

− 2Xu
(2)

Displacement should be proportional to the reference edge length because of uniform compression
and is expressed using a proportional constant at a given compression, c, as:

u = cX (3)

The quantity c is referred to as the strain in the linear elasticity. Using Equation (3), Equation (2)
becomes:

X2
−X2

0 = 2XcX − c2 =
(
2c− c2

)
X2 (4)

Finite strain in the Eulerian scheme, εE2, is defined as:

εE2 ≡ c−
1
2

c2 (5)

In this article, finite strain is referred to as the second-power Eulerian strain because it is defined
by expanding the second power of length. The change of squared length (Equation (2)) is expressed
using the Eulerian finite strain (Equation (5)) as:

X2
−X2

0 = 2εE2X2 (6)

The ratio of the edge length before compression to the reference edge length is expressed by
Eulerian finite strain as:

X0

X
= (1− 2εE2)

1
2 (7)

The ratio of the pre-compression volume to the reference volume is also expressed by Eulerian
finite strain as:

V0

V
=

(X0

X

)3
= (1− 2εE2)

3
2 (8)

Eulerian finite strain is therefore expressed by the volume ratio as:

εE2 =
1
2

1− (V0

V

) 2
3
 (9)

The ε is negative when a body is compressed. To make strain positive by compression, we introduce
fE2 as:

fE2 = −εE2 =
1
2

(V0

V

) 2
3
− 1

 (10)

The quantity fE2 instead of εE2 is usually referred to as Eulerian finite strain.

2.2. The Second-Order Birch–Murnaghan EOS

In isothermal EOSs, pressure, P, is expressed as a function of volume, V. From thermodynamics,
pressure is the volume derivative of Helmholtz energy, F, as:

P = −

(
∂F
∂V

)
T

(11)
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The Helmholtz free energy of matter should increase with compression and may be expressed by
a series of the Eulerian finite strain:

F = a0 + a1 fE2 + a2 fE2
2 + a3 fE2

3 + . . . (12)

Because the absolute value of F is arbitrary, the coefficient of the first term in Equation (12) can be
a0 = 0. Because pressure should be zero in an uncompressed state, fE2 = 0, we have:

P fE2=0 = −

(
∂F
∂ fE2

)
T, fE2=0

(
∂ fE2

∂V

)
T, fE2=0

= −a1

(
∂ fE2

∂V

)
T, fE2=0

= 0 (13)

The coefficient of the second term in Equation (12) is therefore a1 = 0.
Here, we truncate Equation (12) to the fE2

2 term for the first approximation and therefore have:

F � a2 fE2 (14)

By substituting Equation (14) into Equation (11), we have

P = −

{
∂
∂V

(
a2 fE2

2
)}

T
= −2a2

(
∂ fE2

∂V

)
T

fE2 (15)

From the definition of finite strain (Equation (10)), the volume derivative of Eulerian finite strain is:(
∂ fE2

∂V

)
T
=

∂
∂V

1
2

(V0

V

) 2
3
− 1


 = − 1

3V0

(V0

V

) 5
3

(16)

As shown in Appendix A, the coefficient a2 is given by:

a2 =
9
2

KT0V0 (17)

where KT0 is the isothermal bulk modulus at standard temperature. By substituting Equations (10),
(16), and (17) into Equation (15), we have the second-order Birch-Murnaghan EOS:

P = −2
9
2

KT0V0
1
2

(V0

V

) 2
3
− 1

− 1
3V0

(V0

V

) 5
3
 = 3

2
KT0

(V0

V

) 7
3
−

(V0

V

) 5
3
 (18)

This equation contains a subtraction formula between the 7/3 and 5/3 powers of V0/V.
The difference of these two powers, 7/3 − 5/3 = 2/3 is owing to the definition of Eulerian finite
strain (Equation (10)), and the power of 5/3 in the second term is because of the volume derivative of
Eulerian finite strain (Equation (16)).

2.3. The Third-Order Birch–Murnaghan EOS

The concept of the third-order Birch–Murnaghan EOS is almost identical to that of the second-order
equation. The difference is that the Helmholtz free energy expressed by the Eulerian finite strain
(Equation (12)) is truncated not up to the second term but to the third term as:

F � a2 fE2
2 + a3 fE2

3 (19)

By substituting Equation (19) into Equation (11) and differentiating it with respect to volume,
we have:

P = −
{
∂
∂V

(
a2 fE2

2 + a3 fE2
3
)}

T
= −

(
2a2 fE2 + 3a3 f 2

E2

)(∂ fE2
∂V

)
T

= −2a2(1 + ξ1 fE2)
(
∂ fE2
∂V

)
T

fE2

(20)
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where ξ1 = 3a3/2a2. As presented in the Appendix A, the parameter ξ1 is given by:

ξ1 =
3
2

(
K′T0
− 4

)
(21)

where K′T0
is the pressure derivative of the isothermal bulk modulus at standard temperature.

By substituting the definition of Eulerian finite strain (Equation (10)), its volume derivative (Equation
(16)), the parameter a2 (Equation (17)), and parameter m1 (Equation (21)) into Equation (20), we have
the third-order Birch–Murnaghan EOS as:

P = −2
(

9
2 KT0V0

)[
1 + 3

2

(
K′T0
− 4

)
1
2

{(V0
V

) 2
3
− 1

}][
−

1
3V0

(V0
V

) 5
3

]
1
2

[(V0
V

) 2
3
− 1

]
= 3

2 KT0

[(V0
V

) 7
3
−

(V0
V

) 5
3

][
1 + 3

4

(
K′T0
− 4

){(V0
V

) 2
3
− 1

}] (22)

The second term in the first square bracket appears because of the truncation of the Helmholtz
free energy to the higher-order (third) term. The form of the curly bracket is owing to the Eulerian
finite strain (Equation (10)).

The third-order equation (Equation (22)) becomes identical to the second-order equation
(Equation (18)) when

K′T0
= 4 (23)

On the other hand, if K′T0
is neglected as K′T0

= 0, the third-order equation should differ from the
second-order equation.

2.4. The Fourth-Order Birch–Murnaghan EOS

For the fourth-order EOS, Equation (12) is truncated up to the fourth term as:

F � a2 fE2
2 + a3 fE2

3 + a4 fE2
4 (24)

The pressure is then expressed as:

P = −
(
2a2 fE2 + 3a3 f 2

E2 + a4 fE2
3
)(∂ fE2

∂V

)
T
= −2a2 fE2

(
1 + ξ1 fE2 + ξ2 f 2

E2

)(∂ fE2

∂V

)
T

(25)

where ξ2 = 2a4/a2. As given in the Appendix A, the parameter ξ2 is:

ξ2 =
9K′T0

2
− 63K′T0

+ 9KT0K′′T0
+ 143

6
(26)

where K′′T0
is the second pressure derivative of the isothermal bulk modulus at standard temperature.

Similar to the lower-order EOSs, we have the fourth-order Birch–Murnaghan EOS as:

P = 3
2 KT0

[(V0
V

) 7
3
−

(V0
V

) 5
3

][
1 + 3

4

(
K′T0
− 4

){(V0
V

) 2
3
− 1

}
+ 1

24

(
9K′T0

2
− 63K′T0

+ 9KT0 K′′T0
+ 143

){(V0
V

) 2
3
− 1

}2 (27)

This fourth-order equation (Equation (27)) becomes identical to the third-order equation when

K′′T0
= −

1
9KT0

(
9K′T0

2
− 63K′T0

+ 143
)

(28)

Again, if K′′T0
is neglected as K′′T0

= 0, the fourth-order equation should differ from the
third-order equation.
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3. Equations of States from Other Finite Strain Definitions

Through deriving the Birch–Murnaghan EOS, we may have some questions in mind. One is why
the Eulerian scheme is more frequently used to describe the compression of bodies instead of the
Lagrangian scheme. Another question is why is a change in squared length considered; why not other
powers of length? Murnaghan’s [1] argument leaves one to reflect that the use of squared length was
based on Pythagorean theorem but there is no physical reason. To answer these questions, we derive
EOSs from finite strain using the following different definitions:

1. Lagrangian scheme, expansion of squared length, referred to as the second-power Lagrangian EOS;
2. Eulerian scheme, linear expansion of length, referred to as the first-power Eulerian EOS;
3. Eulerian scheme, expansion of cubed length, referred to as the third-power Eulerian EOS.

3.1. The Second-Power Lagrangian EOS

Let us come back to Figure 1. In the Lagrangian scheme, the reference is taken as the
pre-compressed state. Hence, the length after compression, X, is expressed using the reference
length, X0, and displacement:

X = X0 + u (29)

The change in squared edge length is:

X2
−X2

0 = 2X0u + u2 (30)

The displacement is expressed by the reference length as:

u = c0X0 (31)

Note that Equation (31) differs from Equation (3) unless X � X0, namely when strain is finite.
Using Equation (31), Equation (30) becomes:

X2
−X2

0 =
(
2c0 + c0

2
)
X2

0 (32)

We now define the Lagrangian finite strain, εL2, as:

εL2 ≡ c0 +
1
2

c0
2 (33)

Like the Eulerian scheme, Lagrangian finite strain is expressed using the volume ratio:

εL2 =
1
2

( V
V0

) 2
3

− 1

 (34)

For convenience, the quantity fL2 below is hereafter referred to as the second-power Lagrangian
finite strain:

fL2 = −εL2 =
1
2

1− (
V
V0

) 2
3
 (35)

EOSs are constructed based on this strain, which is hereafter referred to as the second-power
Lagrangian EOS. The Birch–Murnaghan EOS is hereafter referred to as the second-power Eulerian EOS.

Like the second-order second-power Eulerian EOS, the Helmholtz free energy is expressed with
the second-power Lagrangian finite strain squared as:

F � a2 fL2
2 (36)
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The expression for pressure in the Lagrangian scheme is identical to the Eulerian scheme as:

P = −2a2 fL2

(
∂ fL2

∂V

)
T

(37)

The volume derivative of the second-power Lagrangian finite strain is given by:

(
∂ fL2

∂V

)
T
= −

1
3V0

(
V
V0

)− 1
3

(38)

The formula of parameter a2 in the Lagrangian scheme is identical to that in the Eulerian scheme
(Equation (17)). As a result, the second-order second-power Lagrangian EOS is given by:

P =
3
2

KT0

( V
V0

)− 1
3

−

(
V
V0

) 1
3
 = 3

2
KT0

(V0

V

) 1
3
−

(V0

V

)− 1
3
 (39)

For the third-order EOS, the Helmholtz free energy is expanded to the third term of fL2 as:

F � a2 fL2
2 + a3 fL2

3 (40)

By differentiating Equation (33) with respect to volume, pressure is expressed as:

P = −2a2(1 + ξ1 fL2)

(
∂ fL2

∂V

)
T

fL2 (41)

The expression of m1 for the second-power Lagrangian finite strain differs from that for the
second-power Eulerian strain and is given by:

ξ1 =
3
2

KT0
′ (42)

From Equations (17), (28), (34), and (35), we have the third-order second-power Lagrangian
EOS as:

P =
3
2

KT0

( V
V0

)− 1
3

−

(
V
V0

) 1
3

1 + 3

4
K′T0

1−
(

V
V0

) 2
3

 (43)

The third-order equation (Equation (43)) becomes identical to the second-order equation
(Equation (39)) when:

K′T0
= 0 (44)

In contrast to the Eulerian scheme, the neglect of K′T0
as K′T0

= 0 is identical to the neglect of a
term higher than third order in the Helmholtz free energy (Equation (36)).

3.2. Finite Strains and EOSs from Linear Length

The change of length itself, namely the first power of length, is considered here in the Eulerian
scheme and given from Equations (1) and (3) as:

X −X0 = u = cX (45)

The first-power Eulerian strain, fE1, is therefore defined as:

fE1 ≡ −εE1 = −c (46)
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Similar to the change in squared length, the first-power Eulerian strain is expressed by the volume
change V0/V as:

fE1 =

(V0

V

) 1
3
− 1

 (47)

The volume derivative of the first-power Eulerian finite strain is given by:(
∂ fE1

∂V

)
T
= −

1
3V0

(V0

V

) 4
3

(48)

The parameter a2 for the first-power Eulerian strain is identical to those of the second-power strain
in the Eulerian and Lagrangian schemes. The second-order first-power Eulerian EOS is, therefore,
given by:

P = KT0

(V0

V

) 5
3
−

(V0

V

) 4
3
 (49)

The parameter ξ1 is given by:

ξ1 =
3
2

(
K′T0
− 3

)
(50)

The third-order first-power Eulerian EOS is therefore given by:

P = 3KT0

(V0

V

) 5
3
−

(V0

V

) 4
3

1 + 3

2

(
K′T0
− 3

)(V0

V

) 1
3
− 1


 (51)

3.3. Finite Strains and EOSs from Cubed Length

We now consider the change in length cubed, namely the third-power of length in the Eulerian
scheme, which is given from Equations (1) and (3) as:

X3
−X3

0 =
(
3c− 3c2 + c3

)
X3 (52)

The third-power Eulerian strain, fE3, is therefore defined as:

fE3 ≡ −εE3 = −c + c2
−

1
3

c3 (53)

Similar to those with the change in squared length, the first-power Eulerian strain is expressed by
volume change V0/V:

fE3 =
1
3

[(V0

V

)
− 1

]
(54)

The volume derivative of the third-power Eulerian finite strain is given by:(
∂ fE3

∂V

)
T
= −

1
3V0

(V0

V

)2
(55)

In the same way as shown previously, the second-order third-power Eulerian EOS is given by:

P = KT0

[(V0

V

)3
−

(V0

V

)2]
(56)

The parameter ξ1 is given by:

ξ1 =
3
2

(
K′T0
− 5

)
(57)
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The third-order third-power Eulerian EOS is therefore given by:

P = KT0

[(V0

V

)3
−

(V0

V

)2][
1 +

1
2

(
K′T0
− 5

){V0

V
− 1

}]
(58)

4. Discussion

4.1. Comparison of Birch–Murnaghan EOSs of Different Orders

Figure 2 shows pressures obtained by the second-, third- and fourth-order Birch–Murnaghan
EOSs of NaCl in the B1-structure, Au, and MgO, which are materials frequently used as pressure
standards in high-pressure experiments. The isothermal bulk moduli of these three materials and their
first and second pressure derivatives at ambient temperature and zero pressure used for construction
of Figure 2 are summarized in Table 1. Note that these EOS parameters were all obtained by the latest
studies of sound velocity measurements [5–7].

Table 1. Bulk moduli and their pressure derivatives of frequently used pressure standard materials.

Material KT0 (GPa) KT0

′

KT0

′′

(GPa−1) Reference

NaCl 23.7 5.14 −0.392 [5]
Au 160.44 6.56 0 [6]

MgO 160.64 4.35 0 [7]

The second- and third-order Birch–Murnaghan EOSs give significantly different pressures for
NaCl and Au under high compression owing to large deviations of KT0

′ from 4 (5.14 and 6.56).
At V/V0 = 0.75, the second- and third-order EOSs yield 12.1 and 14.3 GPa for NaCl and 85 and 112 GPa
for Au, respectively, with differences of 18% and 41% in these cases. Birch [8] justified the validity
of the Birch-Murnaghan EOS by identifying the second- and third-order EOSs within experimental
uncertainty (e.g., KT0

′ � 4). However, modern experimental results have demonstrated that KT0
′ � KS0

′

and significantly differs from 4 in many materials (see Table 11 in Bass [9]), which therefore compromises
the validity of the second-order Birch–Murnaghan EOS.

Figure 2a also shows that the fourth-order equation gives slightly lower pressures than the
third-order equation in the case of NaCl. At V/V0 = 0.75, the fourth-order equation gives a pressure
of 13.7 GPa, which is about 4% lower than that from the third-order equation. For the third- and
fourth-order equations to give identical pressures, the second pressure derivative of the isothermal
bulk modulus must not be KT0

′′ = −0.392 GPa−1 but rather KT0
′′ = −0.267 GPa−1. Figure 2b,c also

show the fourth-order Birch–Murnaghan EOSs of Au and MgO whose second pressure derivatives
of the isothermal bulk modulus at zero pressure are set to KT0

′′ = 0. The pressure at the bottom of
the Earth’s mantle is 136 GPa. To obtain such pressure by the third-order Birch–Murnaghan EOSs of
Au and MgO, the compression must be V/V0 = 0.736 and V/V0 = 0.678, respectively. Under these
compressions, the fourth-order Birch–Murnaghan EOSs with KT0

′′ = 0 give 160 and 152 GPa. Thus,
approximations that ignore higher-order terms of finite strain and equate higher-order derivatives of
the isothermal bulk modulus to zero are not identical in the Birch–Murnaghan EOSs.

The differences in pressure given by the two kinds of EOSs above correspond to 470 and 330 km
in the case of Au and MgO, respectively. The depth of the mantle phase transition at the base of
the Earth’s mantle is particularly complicated to argue. Although Hirose et al. [10] determined the
post-spinel transition boundary in MgSiO3 using Au and MgO pressure scales to interpret the phase
boundary pressure as the D” layer, their argument contains errors on the order of a few hundred km
simply by neglecting K′T0

as KT0
′′ = 0.
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Figure 2. Comparison of the second-, third- and fourth-order Birch–Murnaghan equations of state
(EOSs). (a) NaCl (B1) data are from Matsui et al. [5]; (b) Au data are from Song and Yoneda [6]; (c) MgO
data are from Kono et al. [7]. Red and blue colors denote the Eulerian and Lagrangian schemes,
respectively. The dashed, solid, and dotted curves are of the second-, third- and fourth-order EOSs,
respectively. The green solid curve denotes the pressure-volume relation obtained by integration of the
definition of the bulk modulus (Equation (59)).
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4.2. Eulerian Versus Lagrangian Schemes

An essential difference between the Eulerian and Lagrangian finite strains is that the volume
ratio is inversed with respect to one another (Equations (10) and (35)). Because the reference state is
before compression in the Lagrangian scheme, the post-compression volume is put in the numerator
of the strain formula (Equation (35)). As shown in Figure 3, the Lagrangian finite strain increases
nearly linearly upon compression to V/V0 = 0.2 and then approaches a finite value (0.5) with further
compression (V/V0 → 0). As a result, the Helmholtz free energy and its volume derivative, namely
pressure, only moderately increase with compression. However, it is important to note that pressure
approaches infinity with compression to zero volume because the volume derivative of the finite strain
and one term of the EOS are proportional to the −1/3 power of V/V0 (Equations (38), (39), and (43)).Minerals 2019, 9, x FOR PEER REVIEW 11 of 18 
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Figure 3. Comparison of the Eulerian and Lagrangian finite strains derived by expansion of the
powered length as a function of compression V/V0. The light red, red, and dark red curves denote the
finite strains by expansion of the linear, squared, and cubed lengths in the Eulerian scheme, respectively,
and the blue curve denotes those of the squared lengths in the Lagrangian scheme.

In contrast to the Lagrangian scheme, the Eulerian reference state is after compression and the
post-compression volume is put in the denominator of the strain formula (Equation (10)). As shown
in Figure 3, all Eulerian finite strains rapidly increase and then diverge to infinity as V/V0 → 0 .
As a result, the Helmholtz free energy and pressure also rapidly increase to infinity with V/V0 → 0 .
This behavior in the Eulerian scheme is in better agreement than that in the Lagrangian scheme. It is
also important to note that the rate of pressure increase is very similar in both schemes under low
compression. In other words, both schemes give the same results if the strain is infinitesimal.
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Figure 2a–c show pressures given by the second- and third-order (second-power) Lagrangian
EOSs as well as the Eulerian EOS’s. For comparison, we also show pressures given by the simplest
EOS, which is obtained by integrating the definition of the isothermal bulk modulus as:

P = KT0 ln
(V0

V

)
(59)

with green curves in Figure 2a–c.
As previously discussed, finite strains given in the Eulerian scheme increase much more rapidly

with compression than those of the Lagrangian scheme. The second-order second-power Lagrangian
EOS gives almost identical pressures as the integration of a constant bulk modulus (Equation (37)).
This means that the second-order Lagrangian EOS gives pressures without considering an increase
in bulk modulus with compression. This is reasonable because the third-order Lagrangian EOS
becomes identical to the second-order Lagrangian EOS when K′T0

is neglected as K′T0
= 0. In contrast,

the Eulerian EOSs give substantially higher pressures than when integrating a constant bulk modulus
(Equation (59)). As can be seen from the fact that the second- and third-order (second-power) Eulerian
EOSs become identical in the case of K′T0

= 4, the Eulerian EOSs implicitly contain the effects of an
increased bulk modulus with compression.

The EOSs in both schemes converge with increasing order owing to better approximations of the
Helmholtz free energy by the finite strains. This is the case for MgO (Figure 2c), however not for Au
(Figure 2b). The small difference between the third- and fourth-orders of EOSs of NaCl (Figure 2a)
does not imply that expansion to higher orders effectively helps conversion of the two schemes.
These observations imply an essential problem with the Lagrangian scheme.

4.3. Equations of State Obtained from Expansions of Different Powers of Length

Figure 4a–c, show the third-order EOSs of NaCl, Au, and MgO, respectively, based on Eulerian
finite strain defined by expansion of the first- (linear), second- (squared) and third- (cubed) powers
of length given by Equations (22), (51), and (58), respectively. The EOS from the expansion of the
second-power of length is the Birch–Murnaghan EOS. Because the finite strains based on higher powers
of length increase more rapidly with compression, the EOSs based on higher powers of length are
expected to give higher pressures. This is the case for materials with high K” such as Au. As is seen
in Figure 4b, the first-, second- and third-power EOSs of Au gives pressures of 73, 76, and 78 GPa at
V/V0 = 0.8, respectively. The differences of the first- and third-power EOSs from the Birch–Murnaghan
(second-power) EOS are both about −4% and +3%. The discrepancy between different powers of EOSs
increases with compression, giving pressures of 170, 184, and 194 GPa, respectively, with differences of
about −8% and +5%. The finite strains more rapidly increase under compression with increasing power
of V0/V from 1/3 to 2/3 and then to 1 (Equations (10), (47), and (54)), as shown in Figure 3. Because
these three EOSs are obtained in the same way except for the power of length to define the finite strain,
we cannot say that the Birch–Murnaghan EOS provides substantially more accurate pressures than
the others.

As discussed previously, Birch [8] justified the Birch–Murnaghan EOSs by the identity of the
second- and third-order EOSs when KT0

′ � 4, which is approximately the case in many kinds of
materials. As Equations (51) and (58) show, the second- and third-order Eulerian EOSs based on finite
strains defined from the first- and third-powers of length become identical when K′T0

= 3 and K′T0
= 5,

respectively. Again, as summarized by Bass [9], the K′T0
of the majority of solids are larger than 4. In the

case of Au, K′T0
= 6.56 and the third-power EOS (Equation (58)) should therefore be more appropriate

for Au than the Birch–Murnaghan EOS (Equation (22)) if we follow Birch’s [8] justification.
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4.4. Examination of Equations of State Using Pressure Scale-Free Experimental Data

In this section, we examine the validity of the second-power Lagrangian and first- and third-power
Eulerian third-order EOS’s in comparison with the third-order Birch–Murnaghan (second-power
Eulerian) EOS. Specifically, we attempt to obtain parameters of the Mie-Grüneisen-Debye thermal EOS
of MgO on the basis of these isothermal EOSs using pressure scale-free experimental data following the
method by Tange et al. [11]. “Pressure scale-free” data were data that can be used to build an equation
of state, but no other pressure scales such as pressure values obtained using equations of state of other
pressure standard materials were used to obtain those data. Use of pressure scale-free data allows us
building an equation of state with avoiding any circular argument. The pressure scale-free experimental
data sets used here are zero-pressure and high-temperature thermal expansivity, zero-pressure and
high-temperature adiabatic bulk moduli, 300-K and compressed adiabatic bulk moduli, and shock
compression. Data sources are summarized in Table 2 of Tange et al. [11]. The following parameters at
300 K and 0 GPa are fixed: lattice volume, adiabatic bulk modulus, thermal expansivity, and isobaric
heat capacity. The parameters obtained by these fittings are given in Table 3 of Tange et al. [11].
Note that parameters a and b are adjustable to express the volume dependence of the Grüneisen
parameter γ, according to the following formula:

γ(V) = γ0

1 + a

( V
V0

)b

− 1


 (60)

Table 2 lists the obtained parameters of the thermal EOSs and Figure 5 shows the reproduction of
Hugoniot curves using the obtained parameters.

Table 2. Parameters obtained by fitting pressure-scale-free data to various EOSs.

Parameter
2nd-Power

Eulerian EOS
(Birch-Murnaghan)

2nd-Power
Lagrangian EOS

1st-Power
Eulerian EOS

3rd-Power
Eulerian EOS

V0 (Å3) 74.698 (fixed) 74.698 (fixed) 74.698 (fixed) 74.698 (fixed)
KT0 (GPa) 160.64 160.55 160.64 160.63

K′T0
4.221 4.909 4.293 4.347

θ0 (K) 761 761 (fixed) 761 (fixed) 761 (fixed)
γ0 1.431 1.496 1.436 1.440
a 0.29 0 (fixed) 0.20 0.14
b 3.5 4.4 5.5

V0: lattice volume at 300 K and 0 GPa; KT0 : isothermal bulk modulus; K′T0
: pressure derivative of the bulk modulus;

θ0: Debye temperature; γ0: Grüneisen parameter; a, b: parameters to express volume dependence of the Grüneisen
parameter given in Equation (59).

Figure 5 indicates that all Eulerian EOSs provide Hugoniot curves in agreement with the
experimental data by Marsh [12] and Duffy and Ahrens [13], whereas the Lagrangian EOS does not.
The reason for the failure in construction of an EOS in the Lagrangian scheme is that the parameters a
and b in Equation (60) must not be less than zero; namely, thermal pressure or thermal expansivity
should not increase with increasing pressure. Because the Lagrangian EOS gives much lower pressures
at ambient temperature than the Eulerian EOSs, the thermal pressure must be abnormally high in the
Lagrangian scheme to reproduce the shock experiment data. As a conclusion, the Eulerian scheme
is more appropriate than the Lagrangian scheme to construct an EOS of real materials. On the other
hand, linear and cubed length expansions in the Eulerian scheme provide equivalently appropriate
EOSs compared with the EOS derived from the squared length expansion to define finite strain.
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Figure 5. Hugoniot curves of MgO reproduced by the various EOSs using pressure scale-free data
following Tange et al. [11]. The dashed light-red, thin-solid red, dotted dark-red, and solid blue
curves are obtained from the first-, second- and fourth- Eulerian and second-power Lagrangian EOSs,
respectively. The light-gray square and dark-gray circle are experimental data obtained by Marsh [12]
and Duffy and Ahrens [13], respectively.
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Appendix A

Here we derive parameters a2 in Equations (17), ξ1 in Equations (21), (42), (50) and (57), and ξ2 in
Equation (25), which are related to the isothermal bulk modulus and its first and second derivatives at
zero pressures, respectively.

Appendix A.1 Derivation of Parameter a2

The derivation of parameter a2 in Equation (17) involves equating two expressions of the first
volume derivative of pressure at zero pressure. One expression is based on the isothermal bulk
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modulus at zero pressure. The other assumes that the change in Helmholtz free energy by compression
is proportional to the finite strain squared.

Let us first present the expression from the isothermal bulk modulus, which is defined as:

KT = −V
(
∂P
∂V

)
T

(A1)

The partial derivative of pressure with respect to volume at zero pressure is therefore:(
∂P
∂V

)
T,P=0

= −
KT0

V0
(A2)

Second, let us present the expression from the Helmholtz free energy by the Eulerian finite strain.
By differentiating Equation (15) with respect to volume at constant temperature, we have:(

∂P
∂V

)
T
=

[
∂
∂V

{
−2a2 f

(
∂ f
∂V

)
T

}]
T
= −2a2

( ∂ f
∂V

)2

T
+ f

(
∂2 f
∂2V

)
T


T

(A3)

At zero pressure, the strain is zero: f = 0. The partial derivative of pressure with respect to
volume at constant temperature and zero pressure is therefore:(

∂P
∂V

)
T,P=0

= −2a2

(
∂ f
∂V

)2

T,P=0
(A4)

For Equations (16), (38), (48), and (57), the volume derivative of finite strain at zero pressure is
identical for all Eulerian and Lagrangian finite strains as:(

∂ f
∂V

)
T,P=0

= −
1

3V0
(A5)

By equating Equations (A2) and (A4) with Equation (A5), we have Equation (17).

Appendix A.2 Derivation of Parameter ξ1

The essence of this derivation is identical to that of a2. We present the second volume derivative
of pressure,

(
∂2P/∂V2

)
T

, in this proof.
We first express the volume second derivative of pressure using the isothermal bulk modulus and

its pressure derivative. From the definition of the isothermal bulk modulus, we have(
∂P
∂V

)
T
= −

KT

V
(A6)

Therefore, (
∂2P
∂V2

)
T
=

KT

V2

(
K′T + 1

)
(A7)

At zero pressure, Equation (A7) is:(
∂2P
∂V2

)
T,P=0

=
KT0

V2
0

(
K′T0

+ 1
)

(A8)
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The second volume derivative of pressure is then expressed using the finite strain. Before obtaining
this formula, we obtain the second volume derivative of the second-power Eulerian, the second-power
Lagrangian, and the first-and third-power Eulerian finite strains respectively as:(

∂2 fE2

∂V2

)
T
=

5
9V2

0

(V0

V

) 8
3

(A9a)

(
∂2 fL2

∂V2

)
T
=

1
9V2

0

(
V
V0

)− 4
3

(A9b)

(
∂2 fE1

∂V2

)
T
=

2
9V2

0

(V0

V

) 7
3

(A9c)

(
∂2 fE3

∂V2

)
T
=

2
3V2

0

(V0

V

)3
(A9d)

At zero pressure, we have: (
∂2 fE2

∂V2

)
T,P=0

=
5

9V2
0

(A10a)

(
∂2 fL2

∂V2

)
T,P=0

=
1

9V2
0

(A10b)

(
∂2 fE1

∂V2

)
T,P=0

=
2

9V2
0

(A10c)

(
∂2 fE3

∂V2

)
T,P=0

=
2

3V2
0

(A10d)

The pressure expressed by the volume derivative of the finite-strain polynomial up to the third
term, such as Equation (20), is then differentiated with respect to volume as:(

∂P
∂V

)
T
=

[
∂
∂V

{
−2a2 f (1 + ξ1 f )

(
∂ f
∂V

)
T

}]
T

= −2a2

[
(1 + 2ξ1 f )

(
∂ f
∂V

)
T

2
+

(
f + ξ1 f 2

)( ∂2 f
∂V2

)
T

] (A11)

Equation (A11) is once more differentiated by volume as:(
∂2P
∂V2

)
T
= −2a2

(3 + 6ξ1 f )
(
∂ f
∂V

)
T

(
∂2 f
∂2V

)
T
+ 2ξ1

(
∂ f
∂V

)
T

3

+
(

f + ξ1 f 2
)( ∂3 f
∂V3

)
T

 (A12)

As is done for Equation (A4), Equation (A12) at zero pressure becomes:(
∂2P
∂V2

)
T,0

= −2a2

3( ∂ f
∂V

)
T,0

(
∂2 f
∂2V

)
T,0

+ 2ξ1

(
∂ f
∂V

)
T,0

3

 (A13)

By equating Equations (A8) and (A13) with Equations (17), (A5) and (A10a–10d), we obtain
Equations (21), (42), (50), and (57) for the second-power Eulerian, second-power Lagrangian, first-power
Eulerian, and third-power Eulerian finite strains.
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Appendix A.3 Derivation of Parameter ξ2

To obtain the parameter m2, we present the third volume derivative of pressure,
(
∂3P/∂V3

)
T

.
By differentiating Equation (A7) with respect to volume, we have:(

∂3P
∂V3

)
T
= −

KT

V3

(
K′T

2 + 3K′T + 2 + KTK′′T
)

(A14)

At zero pressure, Equation (A14) is:(
∂3P
∂V3

)
T0

= −
KT0

V3
0

(
K′T0

2 + 3K′T0
+ KT0K′′T0

+ 2
)

(A15)

The third volume derivative of pressure is then expressed using the finite strain. Before obtaining
this formula, we obtain the second volume derivative of the second-power Eulerian as:(

∂3 fE2

∂V3

)
T
= −

40
27V3

0

(V0

V

) 11
3

(A16)

At zero pressure, we have: (
∂3 fE2

∂V3

)
T,P=0

= −
40

27V3
0

(A17)

The pressure expressed by the volume derivative of the finite-strain polynomial up to the fourth
term (Equation (25)) is then differentiated by volume three times as:

(
∂3P
∂V3

)
T
= −2a2

{
6ξ2

(
∂ fE2
∂V

)4

T
+ 6(2ξ1 + 6ξ2 fE2)

(
∂ fE2
∂V

)2

T

(
∂2 fE2
∂V2

)
T

+3
(
1 + 2ξ1 fE2 + 3ξ2 f 2

E2

)(∂2 fE2
∂V2

)2

T

+4
(
1 + 2ξ1 fE2 + 3ξ2 f 2

E2

)(∂ fE2
∂V

)
T

(
∂3 fE2
∂V3

)
T

+
(

fE + ξ1 f 2
E2 + ξ2 fE2

3
)(∂4 fE2

∂V4

)
T

}
(A18)

At zero pressure, Equation (A18) becomes:(
∂3P
∂V3

)
T0

=

−2a2

{
6ξ2

(
∂ fE2
∂V

)4

T0

+ 12ξ1

(
∂ fE2
∂V

)2

T0

(
∂2 fE2
∂V2

)
T0

+ 3
(
∂2 fE2
∂V2

)2

T0

+4
(
∂ fE2
∂V

)
T0

(
∂3 fE2
∂V3

)
T0

} (A19)

By equating Equations (A14) and (A19) with Equations (17), (21), (A5), (A9c), and (A17), we have
Equation (26) for the second-power Eulerian EOS.

References

1. Murnaghan, F.D. Finite Deformations of an Elastic Solid. Am. J. Math. 1937, 59, 235–260. [CrossRef]
2. Birch, F. Finite elastic strain of cubic crystals. Phys. Rev. 1947, 71, 809–824. [CrossRef]
3. Poirier, J.P. Introduction to the Physics of the Earth’s Interior, 2nd ed.; Cambridge University Press: Cambridge,

UK, 2000; p. 312.
4. Anderson, O.L. Equations of States of Solids for Geophysics and Ceramics Science; Oxford University Press:

New York, NY, USA, 1995; p. 405.
5. Matsui, M.; Higo, Y.; Okamoto, Y.; Irifune, T.; Funakoshi, K. Simultaneous sound velocity and density

measurements of NaCl at high temperatures and pressures: Application as a primary pressure standard.
Am. Mineral 2012, 97, 670–1675. [CrossRef]

http://dx.doi.org/10.2307/2371405
http://dx.doi.org/10.1103/PhysRev.71.809
http://dx.doi.org/10.2138/am.2012.4136


Minerals 2019, 9, 745 19 of 19

6. Song, M.; Yoneda, A. Ultrasonic measurements of single-crystal gold under hydrostatic pressures up to
8 GPa in a Kawai-type multi-anvil apparatus. Chin. Sci. Bull. 2008, 52, 1600–1606. [CrossRef]

7. Kono, Y.; Irifune, T.; Higo, Y.; Inoue, T.; Barnhoorn, A. P-V-T relation of MgO derived by simultaneous
elastic wave velocity and in situ X-ray measurements: A new pressure scale for the mantle transition region.
Phys. Earth Planet. Inter. 2010, 183, 196–211.

8. Birch, F. Elasticity and constitution of the earth’s interior. J. Geophys. Res. 1952, 57, 227–286. [CrossRef]
9. Bass, J.D. Elasticity of Minerals, Glasses, and Melts. Miner. Phys. Crystallogr. Handb. Phys. Constants 1995,

2, 45–63.
10. Hirose, K.; Sinmyo, R.; Sata, N.; Ohishi, Y. Determination of post-perovskite phase transition boundary in

MgSiO3 using Au and MgO pressure standards. Geophys. Res. Lett. 2006, 33, L0310. [CrossRef]
11. Tange, Y.; Nishihara, Y.; Tsuchiya, T. Unified analyses for P-V-T equation of state of MgO: A solution for

pressure-scale problems in high P-T experiments. J. Geophys. Res. Solid Earth 2009, 114, B03208. [CrossRef]
12. Marsh, S.P. LASL Shock Hugoniot Data; University California Press: Berkeley, CA, USA, 1980; pp. 312–313.
13. Duffy, T.S.; Ahrens, T.J. Thermal expansion of mantle and core materials at very high pressure.

Geophys. Res. Lett. 1993, 20, 1103–1106. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11434-007-0240-y
http://dx.doi.org/10.1029/JZ057i002p00227
http://dx.doi.org/10.1029/2005GL024468
http://dx.doi.org/10.1029/2008JB005813
http://dx.doi.org/10.1029/93GL00479
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Derivations of the Birch–Murnaghan Equation of State (EOS) 
	Eulerian Finite Strain 
	The Second-Order Birch–Murnaghan EOS 
	The Third-Order Birch–Murnaghan EOS 
	The Fourth-Order Birch–Murnaghan EOS 

	Equations of States from Other Finite Strain Definitions 
	The Second-Power Lagrangian EOS 
	Finite Strains and EOSs from Linear Length 
	Finite Strains and EOSs from Cubed Length 

	Discussion 
	Comparison of Birch–Murnaghan EOSs of Different Orders 
	Eulerian Versus Lagrangian Schemes 
	Equations of State Obtained from Expansions of Different Powers of Length 
	Examination of Equations of State Using Pressure Scale-Free Experimental Data 

	
	Derivation of Parameter a2  
	Derivation of Parameter 1  
	Derivation of Parameter 2  

	References

