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3. Lattice vibration 

1 Boltzman distribution 
1.1 Outline of Boltzman distribution 

Boltzman distribution is the probability distribution or probability measure that gives the 
probability that a system will be in a certain state as a function of the energy of that state and the 
temperature of the system. The distribution is expressed in the billows, 

𝑛𝑖 =
𝑁

∑ 𝑒𝑥𝑝 "− 𝜀𝑖
𝑘𝐵𝑇

#𝑗
𝑒𝑥𝑝$− 𝜀𝑖

𝑘𝐵𝑇
% ∝ 𝑒𝑥𝑝$− 𝜀𝑖

𝑘𝐵𝑇
% (1.1) 

where, 𝑛$ is the probability of the system being in state i, N is the fixed large number of particles,  𝜀$ 
is the energy of that state, 𝑘% is Boltzman’s constant (1.380×10-23 J/K), and T is temperature. In this 
chapter, the background knowledge for the derivation of boltzman distribution is presented and then the 
derivation is performed. 
1.2 Fundamental concept of statistical mechanins 

Entropy S is defined follows as Boltzmann’s entropy formula, 

𝑆 ≡ 𝑘% ln𝑊 (2.1) 
where the principle of equal a priori probabilities holds and the state with the largest entropy S appears 
most probably when it has the largest number of configurations W. 

And the Temperature T is defined by using entropy S and internal energy E as follows. 

1/𝑇 = 3
𝜕𝑆
𝜕𝐸6&'()*	,&-.$'$&-/

 (2.2) 

The above equation means that the rate of entropy increasing with increasing energy. 
1.3 Lagrange multiplier 

Lagrange multiplier is a strategy for finding local maxima and minima of a function subject to 
equality constrains. The method can be summarized Lagrangian function as follows,  

𝐿(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) − 𝜆𝑔(𝑥, 𝑦) (3.1) 

In order to find a point (𝑎, 𝑏) where the maximum or minimum of a function 𝑓(𝑥, 𝑦) subducted to 

the equality constraint 𝑔(𝑥, 𝑦) = 0. Where 𝜆 is called Lagrange multiplier. If at least one of 01
02

 and 

01
03

 is not zero at point (a, b), then there exists 𝜆 and the following holds at point (a, b, 𝜆). 

𝜕𝐿(𝑎, 𝑏)
𝜕𝑥

=
𝜕𝐿(𝑎, 𝑏)
𝜕𝑦

=
𝜕𝐿(𝑎, 𝑏)
𝜕𝜆

= 0 (3.2) 

On the other hand, the point (𝑎, 𝑏) is different from points where 𝑓(𝑥, 𝑦) has maxima and minima 
without the constraint 𝑔(𝑥, 𝑦) = 0, the following hold. 

𝜕𝑓
𝜕𝑥

≠ 0	and	
𝜕𝑓
𝜕y

≠ 0 (3.3) 
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𝜕𝐿
𝜕𝑥

= 0,
𝜕𝐿
𝜕𝑦

= 0 (3.4) 

Therefore,  

𝜕𝑓
𝜕𝑥

= 𝜆
𝜕𝑔
𝜕𝑥
,
𝜕𝑓
𝜕𝑦

= 𝜆
𝜕𝑔
𝜕𝑦

 (3.5) 

Thus,  

3
𝜕𝑓
𝜕𝑥
	,
𝜕𝑓
𝜕𝑦
	6 = 𝜆 3

𝜕𝑔
𝜕𝑥
	,
𝜕𝑔
𝜕𝑦
	6 (3.6) 

We can visualize contours of f given by f (x, y) = d for various values of d, and the contour of g given 
by g (x, y) = c. The equation (3.6) means that  𝑓 = 𝑑4 g = 0 corves are parallel in the x-y plane. When 
(x, y) moves along 𝑔 = 0,  f does not change at a minimum/maximum (a,b). In other words, 𝑓 = 𝑑4 
and g = 0 are parallel at (a,b ) (fig.1). The ratio of the change of 𝑓	(𝑥, 𝑦) to the change of 𝑔	(𝑥, 𝑦) 
by changing parameters 	(𝑥, 𝑦), where 𝑓	(𝑥, 𝑦) and 𝑔	(𝑥, 𝑦) are not constant. 
 

Fig. 1. The red curve shows the constraint 𝑔(𝑥, 𝑦) = 𝑐. The blue curves are contours of 𝑓(𝑥, 𝑦). 

The point where the red constraint tangentially touches a blue contour is the maximum of 𝑓(𝑥, 𝑦) 

along the constraint, since 𝑑! > 𝑑". 

 

1.4 Derivation of Boltzmann distribution 
Considering a system composed of the fixed number of N particles with a fixed total energy E, 

energy of a particle is 𝜀$, and the number of particles having an energy 𝜀$ is 𝑛$. Then the total number 
of particles N and the total energy of the system E can be expressed as follows. 

𝑁 = ∑5678 𝑛$ (4.1) 
𝐸 = ∑5678 𝑛$𝜀$ (4.2) 
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And here, the number of configuration of the system (n1, n2, n3, …), W and the entropy of the system 
are as billows. 

𝑊 =
𝑁!

𝑛7! 𝑛4! 𝑛9!	. . .
 (4.3) 

𝑆 = 𝑘%	ln𝑊 = 𝑘%	ln
𝑁!

𝑛7! 𝑛4! 𝑛9!	. . .

= 𝑘%	(ln𝑁! − ∑567𝑛5!) 

(4.4) 

Here, the Stirling's approximation is as follows. 

ln𝑁! ≅ 𝑁ln𝑁 − 𝑁 (4.5) 

Using the Stirling’s approximation (4,5), ln𝑊 in (4.4) becomes as billows, 
ln𝑊 ≅ 𝑁ln𝑁 − 𝑁 − ∑5678 𝑛5ln𝑛5−𝑛5

= 𝑁ln𝑁 − ∑5678 𝑛5ln𝑛5−𝑛5
− [𝑁 − ∑5678 𝑛5]
= 𝑁ln𝑁 − ∑5678 𝑛5ln𝑛5 

(4.6) 

Therefore, the conditions for the largest ln𝑊 will be d	ln𝑊 = 0. And the total number of particles 
and the total energy of the system are fixed as billow from (4.1) and (4.2), 

d𝑁 = ∑$678 d𝑛$ = 0 (4.7) 

d𝐸 = ∑5678 𝑛$d𝜀$ = 0 (4.8) 

Using (4.6), the change in the logarithmic number of microstates, ln𝑊 is as follows,  
d	ln𝑊 = d(𝑁ln𝑁 − ∑5678 𝑛5ln𝑛5)

= (d𝑁 + 𝑁d	ln𝑁)
− ∑5678 (d𝑛5	ln𝑛5 + 𝑛5d	ln𝑛5)

= −∑5678 (d𝑛5ln𝑛5 +
𝑛5d𝑛5
𝑛5

)

= −∑5678 (1 + 	ln𝑛5)d𝑛5
≅ −∑5678 ln𝑛5d𝑛5 

(4.9) 

Applying the method of Lagrange multiplier to obtain the maximum ln𝑊, which indicates the most 
probable state, under conditions of fixed N and E. 

𝐿 = ln𝑊 + 𝛼𝑁 − 𝛽𝐸 (4.10) 

Where, 𝛼 and 𝛽 are Lagrange multiplier constant. Differentiating both sides of (4.10), we obtain 
d𝐿 = d	ln𝑊 + 𝛼d𝑁 − 𝛽d𝐸

= −∑5678 ln𝑛5d𝑛5 − 𝛼∑5678 d𝑛5
− 𝛽∑5678 𝜀$d𝑛5 

(4.11) 

here, using (4.7) (4.8) (4.9), (4.11) becomes as billows, 
d𝐿 = −∑5678 (ln𝑛5 + 𝛼 + 𝛽𝜀$)d𝑛5 (4.12) 

Therefore,  
d𝐿 = ∑5678 (ln𝑛5 + 𝛼 + 𝛽𝜀$)d𝑛5 = 0 (4.13) 

Thus, we obtain the following. 
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ln𝑛5 + 𝛼 + 𝛽𝜀$ = 0 (4.14) 
From (4.14), the Boltzmann distribution (3.1) becomes as follows, 

𝑛5 = exp(−𝛼 − 𝛽𝜀$) = exp(−𝛼)	exp(−𝛽𝜀$)
= 𝐴	exp(−𝛽𝜀$) 

(4.15) 

Where, A is exp(−𝛼). And 𝑛5 and 𝜀$ are balanced to maximize W at constant N and E. From 
here, determine 𝛽 from (4.14). Multiplying both sides of (4.14) by ∑5 𝑛5, we obtain,  

∑5 𝑛5	ln𝑛5 + 𝛼∑5 𝑛5 + 𝛽∑5 𝑛5 = 0 (4.16) 
Using (4.6), (4.16) is changed as follow. 

𝑁ln𝑁 − ln𝑊	 + 𝛼∑5 𝑛5 + 𝛽∑5678 𝑛5𝜀$ = 0 (4.17) 
By multiplying by kB, (4.16) becomes as follow. 

𝑘%𝑁ln𝑁 − 𝑘%ln𝑊	 + 𝑘%𝛼∑5 𝑛5 + 𝑘%𝛽∑5678 𝑛5𝜀$
= 0 

(4.18) 

From the definition of entropy (3.2), (4.18) becomes as follow. 
𝑘%𝑁ln𝑁 − 𝑆	 + 𝛼𝑘%𝑁 + 𝛽𝑘%𝐸 = 0 (4.19) 

Thus,  
𝑆	 = 𝑘%𝑁ln𝑁	 + 𝛼𝑘%𝑁 + 𝛽𝑘%𝐸 (4.20) 

Differentiating (4.20) by E, 
d𝑆
d𝐸

=
d
d𝐸

(𝑘%𝑁ln𝑁	 + 𝛼𝑘%𝑁 + 𝛽𝑘%𝐸) = 𝛽𝑘% (4.21) 

From the definition of the temperature, T, :;
:<
= 4

=
 

𝛽𝑘% =
1
𝑇

 (4.22) 

Thus,  

𝛽 =
1
𝑘%𝑇

 (4.23) 

From here, determine the factor A of (4.15). By substituting (4.23) into (4.14),  

ln𝑛5 + 𝛼 +
𝜀$
𝑘%𝑇

= 0 (4.24) 

𝑛5 = exp(−𝛼)exp(−
𝜀$
𝑘%𝑇

) = 𝐴	exp(−
𝜀$
𝑘%𝑇

) (4.25) 

By substituting (4.25) into (4.1), 

𝑁 = ∑5 𝐴	exp(−
𝜀$
𝑘%𝑇

) (4.26) 

Thus, A is as billows. 

A =
𝑁

∑5 	exp(−
𝜀$
𝑘%𝑇

)
 (4.27) 

Thus, the Boltzmann distribution can be expressed as follows (3.1). 
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𝑛𝑖 =
𝑁

∑ 𝑒𝑥𝑝 "− 𝜀𝑖
𝑘𝐵𝑇

#𝑗
𝑒𝑥𝑝$− 𝜀𝑖

𝑘𝐵𝑇
% ∝ 𝑒𝑥𝑝$− 𝜀𝑖

𝑘𝐵𝑇
% (1.1) 

 


