3. Lattice vibration

1 Boltzman distribution

1.1 Outline of Boltzman distribution

Boltzman distribution is the probability distribution or probability measure that gives the probability that a system will be in a certain state as a function of the energy of that state and the temperature of the system. The distribution is expressed in the billows,

$$
\begin{equation*}
n_{i}=\frac{N}{\sum_{j} \exp \left(-\frac{\varepsilon_{i}}{k_{B} T}\right)} \exp \left(-\frac{\varepsilon_{i}}{k_{B} T}\right) \propto \exp \left(-\frac{\varepsilon_{i}}{k_{B} T}\right) \tag{1.1}
\end{equation*}
$$

where, n_{i} is the probability of the system being in state i, N is the fixed large number of particles, ε_{i} is the energy of that state, k_{B} is Boltzman's constant $\left(1.380 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$, and T is temperature. In this chapter, the background knowledge for the derivation of boltzman distribution is presented and then the derivation is performed.

1.2 Fundamental concept of statistical mechanins

Entropy S is defined follows as Boltzmann's entropy formula,

$$
\begin{equation*}
S \equiv k_{B} \ln W \tag{2.1}
\end{equation*}
$$

where the principle of equal a priori probabilities holds and the state with the largest entropy S appears most probably when it has the largest number of configurations W.

And the Temperature T is defined by using entropy S and internal energy E as follows.

$$
\begin{equation*}
1 / T=\left(\frac{\partial S}{\partial E}\right)_{\text {other conditions }} \tag{2.2}
\end{equation*}
$$

The above equation means that the rate of entropy increasing with increasing energy.

1.3 Lagrange multiplier

Lagrange multiplier is a strategy for finding local maxima and minima of a function subject to equality constrains. The method can be summarized Lagrangian function as follows,

$$
\begin{equation*}
L(x, y)=f(x, y)-\lambda g(x, y) \tag{3.1}
\end{equation*}
$$

In order to find a point (a, b) where the maximum or minimum of a function $f(x, y)$ subducted to the equality constraint $g(x, y)=0$. Where λ is called Lagrange multiplier. If at least one of $\frac{\partial g}{\partial x}$ and $\frac{\partial g}{\partial y}$ is not zero at point (a, b), then there exists λ and the following holds at point (a, b, λ).

$$
\begin{equation*}
\frac{\partial L(a, b)}{\partial x}=\frac{\partial L(a, b)}{\partial y}=\frac{\partial L(a, b)}{\partial \lambda}=0 \tag{3.2}
\end{equation*}
$$

On the other hand, the point (a, b) is different from points where $f(x, y)$ has maxima and minima without the constraint $g(x, y)=0$, the following hold.

$$
\begin{equation*}
\frac{\partial f}{\partial x} \neq 0 \text { and } \frac{\partial f}{\partial y} \neq 0 \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial L}{\partial x}=0, \frac{\partial L}{\partial y}=0 \tag{3.4}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\frac{\partial f}{\partial x}=\lambda \frac{\partial g}{\partial x}, \frac{\partial f}{\partial y}=\lambda \frac{\partial g}{\partial y} \tag{3.5}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)=\lambda\left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}\right) \tag{3.6}
\end{equation*}
$$

We can visualize contours of f given by $f(x, y)=d$ for various values of d, and the contour of g given by $g(x, y)=c$. The equation (3.6) means that $f=d_{1} g=0$ corves are parallel in the $x-y$ plane. When (x, y) moves along $g=0, f$ does not change at a minimum/maximum (a, b). In other words, $f=d_{1}$ and $g=0$ are parallel at (a, b) (fig.1). The ratio of the change of $f(x, y)$ to the change of $g(x, y)$ by changing parameters (x, y), where $f(x, y)$ and $g(x, y)$ are not constant.

Fig. 1. The red curve shows the constraint $g(x, y)=c$. The blue curves are contours of $f(x, y)$.
The point where the red constraint tangentially touches a blue contour is the maximum of $f(x, y)$ along the constraint, since $d_{1}>d_{2}$.

1.4 Derivation of Boltzmann distribution

Considering a system composed of the fixed number of N particles with a fixed total energy E , energy of a particle is ε_{i}, and the number of particles having an energy ε_{i} is n_{i}. Then the total number of particles N and the total energy of the system E can be expressed as follows.

$$
\begin{gather*}
N=\sum_{\mathrm{i}=0}^{\infty} n_{i} \tag{4.1}\\
E=\sum_{\mathrm{i}=0}^{\infty} n_{i} \varepsilon_{i} \tag{4.2}
\end{gather*}
$$

And here, the number of configuration of the system $\left(n_{1}, n_{2}, n_{3}, \ldots\right), W$ and the entropy of the system are as billows.

$$
\begin{gather*}
W=\frac{N!}{n_{0}!n_{1}!n_{2}!\ldots} \tag{4.3}\\
S=k_{B} \ln W=k_{B} \ln \frac{N!}{n_{0}!n_{1}!n_{2}!\ldots} \tag{4.4}\\
\\
=k_{B}\left(\ln N!-\sum_{\mathrm{i}=0} n_{\mathrm{i}}!\right)
\end{gather*}
$$

Here, the Stirling's approximation is as follows.

$$
\begin{equation*}
\ln N!\cong N \ln N-N \tag{4.5}
\end{equation*}
$$

Using the Stirling's approximation $(4,5), \ln W$ in (4.4) becomes as billows,

$$
\begin{align*}
\ln W \cong N \ln N-N & -\sum_{\mathrm{i}=0}^{\infty} n_{\mathrm{i}} \ln n_{\mathrm{i}}-n_{\mathrm{i}} \\
& =N \ln N-\sum_{\mathrm{i}=0}^{\infty} n_{\mathrm{i}} \ln n_{\mathrm{i}}-n_{\mathrm{i}} \\
& -\left[N-\sum_{\mathrm{i}=0}^{\infty} n_{\mathrm{i}}\right] \tag{4.6}\\
& =N \ln N-\sum_{\mathrm{i}=0}^{\infty} n_{\mathrm{i}} \ln n_{\mathrm{i}}
\end{align*}
$$

Therefore, the conditions for the largest $\ln W$ will be $\mathrm{d} \ln W=0$. And the total number of particles and the total energy of the system are fixed as billow from (4.1) and (4.2),

$$
\begin{gather*}
\mathrm{d} N=\sum_{i=0}^{\infty} \mathrm{d} n_{i}=0 \tag{4.7}\\
\mathrm{~d} E=\sum_{\mathrm{i}=0}^{\infty} n_{i} \mathrm{~d} \varepsilon_{i}=0 \tag{4.8}
\end{gather*}
$$

Using (4.6), the change in the logarithmic number of microstates, $\ln W$ is as follows,

$$
\begin{align*}
\mathrm{d} \ln W=\mathrm{d}(N \ln N & \left.-\sum_{\mathrm{i}=0}^{\infty} n_{\mathrm{i}} \ln n_{\mathrm{i}}\right) \\
& =(\mathrm{d} N+N \mathrm{~d} \ln N) \\
& -\sum_{\mathrm{i}=0}^{\infty}\left(\mathrm{d} n_{\mathrm{i}} \ln n_{\mathrm{i}}+n_{\mathrm{i}} \mathrm{~d} \ln n_{\mathrm{i}}\right) \\
& =-\sum_{\mathrm{i}=0}^{\infty}\left(\mathrm{d} n_{\mathrm{i}} \ln n_{\mathrm{i}}+\frac{n_{\mathrm{i}} \mathrm{~d} n_{\mathrm{i}}}{n_{\mathrm{i}}}\right) \tag{4.9}\\
& =-\sum_{\mathrm{i}=0}^{\infty}\left(1+\ln n_{\mathrm{i}}\right) \mathrm{d} n_{\mathrm{i}} \\
& \cong-\sum_{\mathrm{i}=0}^{\infty} \ln n_{\mathrm{i}} \mathrm{~d} n_{\mathrm{i}}
\end{align*}
$$

Applying the method of Lagrange multiplier to obtain the maximum $\ln W$, which indicates the most probable state, under conditions of fixed N and E.

$$
\begin{equation*}
L=\ln W+\alpha N-\beta E \tag{4.10}
\end{equation*}
$$

Where, α and β are Lagrange multiplier constant. Differentiating both sides of (4.10), we obtain

$$
\begin{array}{rl}
\mathrm{d} L=\mathrm{d} \ln W+\alpha \mathrm{d} & N-\beta \mathrm{d} E \\
& =-\sum_{\mathrm{i}=0}^{\infty} \ln n_{\mathrm{i}} \mathrm{~d} n_{\mathrm{i}}-\alpha \sum_{\mathrm{i}=0}^{\infty} \mathrm{d} n_{\mathrm{i}} \tag{4.11}\\
& -\beta \sum_{\mathrm{i}=0}^{\infty} \varepsilon_{i} \mathrm{~d} n_{\mathrm{i}}
\end{array}
$$

here, using (4.7) (4.8) (4.9), (4.11) becomes as billows,

$$
\begin{equation*}
\mathrm{d} L=-\sum_{\mathrm{i}=0}^{\infty}\left(\ln n_{\mathrm{i}}+\alpha+\beta \varepsilon_{i}\right) \mathrm{d} n_{\mathrm{i}} \tag{4.12}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\mathrm{d} L=\sum_{\mathrm{i}=0}^{\infty}\left(\ln n_{\mathrm{i}}+\alpha+\beta \varepsilon_{i}\right) \mathrm{d} n_{\mathrm{i}}=0 \tag{4.13}
\end{equation*}
$$

Thus, we obtain the following.

$$
\begin{equation*}
\ln n_{\mathrm{i}}+\alpha+\beta \varepsilon_{i}=0 \tag{4.14}
\end{equation*}
$$

From (4.14), the Boltzmann distribution (3.1) becomes as follows,

$$
\begin{gather*}
n_{\mathrm{i}}=\exp \left(-\alpha-\beta \varepsilon_{i}\right)=\exp (-\alpha) \exp \left(-\beta \varepsilon_{i}\right) \tag{4.15}\\
=A \exp \left(-\beta \varepsilon_{i}\right)
\end{gather*}
$$

Where, A is $\exp (-\alpha)$. And n_{i} and ε_{i} are balanced to maximize W at constant N and E. From here, determine β from (4.14). Multiplying both sides of (4.14) by $\sum_{\mathrm{i}} n_{\mathrm{i}}$, we obtain,

$$
\begin{equation*}
\sum_{\mathrm{i}} n_{\mathrm{i}} \ln n_{\mathrm{i}}+\alpha \sum_{\mathrm{i}} n_{\mathrm{i}}+\beta \sum_{\mathrm{i}} n_{\mathrm{i}}=0 \tag{4.16}
\end{equation*}
$$

Using (4.6), (4.16) is changed as follow.

$$
\begin{equation*}
N \ln N-\ln W+\alpha \sum_{\mathrm{i}} n_{\mathrm{i}}+\beta \sum_{\mathrm{i}=0}^{\infty} n_{\mathrm{i}} \varepsilon_{i}=0 \tag{4.17}
\end{equation*}
$$

By multiplying by k_{B}, (4.16) becomes as follow.

$$
\begin{align*}
k_{B} N \ln N-k_{B} \ln W & +k_{B} \alpha \sum_{\mathrm{i}} n_{\mathrm{i}}+k_{B} \beta \sum_{\mathrm{i}=0}^{\infty} n_{\mathrm{i}} \varepsilon_{i} \tag{4.18}\\
= & 0
\end{align*}
$$

From the definition of entropy (3.2), (4.18) becomes as follow.

$$
\begin{equation*}
k_{B} N \ln N-S+\alpha k_{B} N+\beta k_{B} E=0 \tag{4.19}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
S=k_{B} N \ln N+\alpha k_{B} N+\beta k_{B} E \tag{4.20}
\end{equation*}
$$

Differentiating (4.20) by E,

$$
\begin{equation*}
\frac{\mathrm{d} S}{\mathrm{~d} E}=\frac{\mathrm{d}}{\mathrm{~d} E}\left(k_{B} N \ln N+\alpha k_{B} N+\beta k_{B} E\right)=\beta k_{B} \tag{4.21}
\end{equation*}
$$

From the definition of the temperature, $T, \frac{\mathrm{~d} S}{\mathrm{~d} E}=\frac{1}{T}$

$$
\begin{equation*}
\beta k_{B}=\frac{1}{T} \tag{4.22}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\beta=\frac{1}{k_{B} T} \tag{4.23}
\end{equation*}
$$

From here, determine the factor A of (4.15). By substituting (4.23) into (4.14),

$$
\begin{gather*}
\ln n_{\mathrm{i}}+\alpha+\frac{\varepsilon_{i}}{k_{B} T}=0 \tag{4.24}\\
n_{\mathrm{i}}=\exp (-\alpha) \exp \left(-\frac{\varepsilon_{i}}{k_{B} T}\right)=A \exp \left(-\frac{\varepsilon_{i}}{k_{B} T}\right) \tag{4.25}
\end{gather*}
$$

By substituting (4.25) into (4.1),

$$
\begin{equation*}
N=\sum_{\mathrm{i}} A \exp \left(-\frac{\varepsilon_{i}}{k_{B} T}\right) \tag{4.26}
\end{equation*}
$$

Thus, A is as billows.

$$
\begin{equation*}
\mathrm{A}=\frac{N}{\sum_{\mathrm{i}} \exp \left(-\frac{\varepsilon_{i}}{k_{B} T}\right)} \tag{4.27}
\end{equation*}
$$

Thus, the Boltzmann distribution can be expressed as follows (3.1).

$$
\begin{equation*}
n_{i}=\frac{N}{\sum_{j} \exp \left(-\frac{\varepsilon_{i}}{k_{B} T}\right)} \exp \left(-\frac{\varepsilon_{i}}{k_{B} T}\right) \propto \exp \left(-\frac{\varepsilon_{i}}{k_{B} T}\right) \tag{1.1}
\end{equation*}
$$

