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7. Debye Model 
1. What is the Debye Model? 

In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or 
molecules in a crystalline material – the crystal lattice. If the crystal lattice is composed of atoms, it can 
be referred to as atomic lattice. If heat is applied to the atomic lattice, vibrations occur – known as 
lattice vibrations. Several models were developed to explain the effect lattice vibrations, such as the 
Einstein model and the Debye model. We are looking at the Debye model. The Debye model was 
developed by Peter Debye in 1912. 

In thermodynamics and solid state physics, the Debye model is a method for estimating the phonon 
contribution to the specific heat (heat capacity) in a solid. A phonon is a collective excitation in a 
periodic, elastic arrangement of atoms or molecules in condescend matter, specifically in solids – 
phonons can be thought of as quantitized sound waves. In other words, the Debye model is a model of 
lattice vibration that considers the frequency dependence of the number of modes as a function of 
temperature (T). The term mode describes any of the patterns of lattice waves in a crystal. At low 
temperature, a limited number of modes are excited, whereas all available modes are excited at high 
temperature. In contrast to the Debye model, the Einstein model treats a solid as many individual, non-
interacting quantum harmonic oscillators and the number of modes is considered to be constant. 

The Debye model correctly predicts the low temperature (T) dependence of heat capacity: heat 
capacity is proportional to T3, known as the Debye T3 law.  

2. Waves in the crystal lattice 
In general, lattice vibration propagates in any direction. The propagation direction is expressed 

using a wave vector 𝐾𝐾��⃗  and the displacement of an atom from its equilibrium position is expressed as 
vector 𝑢𝑢�⃗ . If the displacement vector is parallel to the wave vector (𝑢𝑢�⃗   || 𝐾𝐾��⃗ ), the wave is called 
compressional or P-wave (Fig. 1, left). If the displacement vector is perpendicular to the wave vector 
(𝑢𝑢�⃗  ⊥ 𝐾𝐾��⃗ ), the wave is called transverse or S-wave and it has two directions of oscillation (polarity) (Fig. 
1, right). 
 

Fig. 1. Conceptual diagram of longitudinal waves (left) and transverse waves (right) propagation 
through a crystal lattice. Wave vector (green) and displacement vectors (red) are indicated. 

 

3. The number of modes in a 1D crystal 
The Debye model treats atomic vibrations as phonons in a box – the box being the crystal. Consider 

a 1 dimensional (1D) crystal with the dimensions L and atoms located in specific intervals (a), then L 
can be expressed as: 

L =  (𝑁𝑁 − 1)𝑎𝑎 (3.7.1) 
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The resonating modes of the sonic disturbances inside the crystal (considering for now only those 
aligned with one axis) have wavelengths (λ) given by: 

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 =  L = 𝑁𝑁𝑎𝑎 (3.7.2) 
L
2

=  
𝑁𝑁𝑎𝑎
2

 etc. (3.7.3) 

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 =  2𝑎𝑎 =
𝑁𝑁𝑎𝑎
𝑁𝑁/2

=  
𝐿𝐿
𝑁𝑁/2

 (3.7.4) 

The angular wave number k, aligned in the constant interval 2𝜋𝜋
𝐿𝐿

, is calculated as (Fig. 2): 

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 =  ± 
2𝜋𝜋
𝐿𝐿

 (3.7.5) 

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 =  ± 
2𝜋𝜋
2𝑎𝑎

=  
𝑁𝑁
2

 
2𝜋𝜋
𝑁𝑁𝑎𝑎

=  ± 
𝑁𝑁
2

 
2𝜋𝜋
𝐿𝐿

 (3.7.6) 

 
This shows that k is limited in a discrete lattice. The number of modes is calculated as: 

2 × 
𝑁𝑁
2

= 𝑁𝑁 (3.7.7) 

which means that the number of modes equals the number of atoms in the crystal lattice.  
 

Fig. 2. Conceptual illustration of calculating the angular wave number at different points in the 
crystal lattice. 

 

4. Densities of states in 1D lattice 
The density of state (D) is the number of modes (nm) at a given frequency (ω): 

𝐷𝐷(𝜔𝜔)d𝜔𝜔 =  
d𝑛𝑛𝑚𝑚
d𝜔𝜔

 dω =  
d𝑛𝑛𝑚𝑚
d𝑘𝑘

 
d𝑘𝑘
d𝜔𝜔

 d𝜔𝜔 (3.7.8) 

The number of modes per unit k is equal to the reciprocal of the interval in k space: 
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d𝑛𝑛𝑚𝑚
d𝑘𝑘

=  
1

d𝑘𝑘 d𝑛𝑛𝑚𝑚⁄ =
1

2π 𝐿𝐿⁄
=  

𝐿𝐿
2𝜋𝜋

  (3.7.9) 

If we assume a linear relation of ω to k the in the majority of the k space, frequency ω can be 
calculated as: 

𝜔𝜔 =  �4𝐶𝐶 𝑚𝑚⁄  sin(𝑘𝑘𝑎𝑎 2⁄ ) ≅   �4𝐶𝐶 𝑚𝑚⁄  𝑘𝑘𝑎𝑎 2⁄ =   �𝐶𝐶 𝑚𝑚⁄  𝑎𝑎𝑘𝑘 (3.7.10) 

Group velocity can be expressed as: 

𝑣𝑣𝑔𝑔 =  d𝜔𝜔 d𝑘𝑘⁄  ≅  𝜔𝜔 𝑘𝑘⁄ =  �𝐶𝐶 𝑚𝑚⁄  𝑎𝑎 =  𝑣𝑣𝑝𝑝 (3.7.11) 

d𝑘𝑘
d𝜔𝜔

=  
1

d𝜔𝜔 d𝑘𝑘⁄  =  
1
𝑣𝑣𝑔𝑔

≅  
1
𝑣𝑣𝑝𝑝

=  
1

�𝐶𝐶 𝑚𝑚⁄ 𝑎𝑎
 (3.7.12) 

By combining the equations, density of state in a one dimensional lattice can be calculated as: 

𝐷𝐷(𝜔𝜔) =
d𝑛𝑛𝑚𝑚
d𝑘𝑘

 
d𝑘𝑘
d𝜔𝜔

 =  
𝐿𝐿

2𝜋𝜋
1
𝑣𝑣𝑔𝑔

≅  
𝐿𝐿

2𝜋𝜋
1
𝑣𝑣𝑝𝑝

=  
𝐿𝐿

2𝜋𝜋
1

�𝐶𝐶 𝑚𝑚⁄ 𝑎𝑎
 (3.7.13) 

This means that density of state in a one dimensional lattice is constant and independent of 
frequency ω. 

 

5. Densities of states in 3D crystals 
Let’s consider the density of state in three dimensional crystals (3D k-space) (Fig. 3), meaning in a 

reciprocal lattice. K-points are aligned with a 2π/L interval, so there is one k-point for every cubic space 
of (2π/L)3. This can be expressed as: 

(2𝜋𝜋/𝐿𝐿)3 = 8𝜋𝜋3 𝐿𝐿3 = ⁄ 8𝜋𝜋3 𝑉𝑉⁄  (3.7.14) 

 

Fig. 3. Conceptual illustration of calculating the density of states in a three dimensional crystal, 
which shows the relevant parameters. 
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To calculate the volume (V) of a sphere with diameter k, the number of modes (nm) with |k| ≤ kmax 
and k-points within the kmax sphere, we need: 

𝑉𝑉𝑘𝑘≤𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = (4 3) 𝜋𝜋𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚
3⁄  (3.7.15) 

𝑛𝑛m = ((4 3) 𝜋𝜋𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚
3⁄ ) 8𝜋𝜋3 𝑉𝑉⁄⁄ =  𝑉𝑉𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

3 6𝜋𝜋2⁄  (3.7.16) 

 
That means that the number of modes nm

 increases with a larger crystal volume V, smaller specific 
intervals a and larger unit k. Let’s continue our calculation of density of states in a 3D crystal assuming 
that vg ≈ vp: 

𝐷𝐷(𝜔𝜔) =
d𝑛𝑛𝑚𝑚
d𝜔𝜔

=  
d𝑛𝑛𝑚𝑚
d𝑘𝑘

 
d𝑘𝑘
d𝜔𝜔

=
d

d𝑘𝑘
 �
𝑉𝑉𝑘𝑘3

6𝜋𝜋2�
1
𝑣𝑣𝑔𝑔

=  �
𝑉𝑉𝑘𝑘2

2𝜋𝜋2𝑣𝑣𝑔𝑔
�  ≈  

𝑉𝑉(𝜔𝜔 𝑣𝑣𝑝𝑝⁄ )2

2𝜋𝜋2𝑣𝑣𝑝𝑝
=  

𝑉𝑉𝜔𝜔2

2𝜋𝜋2𝑣𝑣𝑝𝑝3
 

(3.7.17) 

This means that D(ω) is proportional to ω2. In a one dimensional crystal  

𝐷𝐷(𝜔𝜔) =
d𝑛𝑛𝑚𝑚
d𝑘𝑘

 
d𝑘𝑘
d𝜔𝜔

 =  
𝐿𝐿

2𝜋𝜋
1
𝑣𝑣𝑝𝑝

 (3.7.13) 

which means that it is independent from ω. The sum of density of states for one longitudinal and two 
transverse waves is calculated as: 

𝐷𝐷(𝜔𝜔) =
1𝑉𝑉𝜔𝜔2

2𝑣𝑣𝐿𝐿3𝜋𝜋2
+ 

2𝑉𝑉𝜔𝜔2

2𝑣𝑣𝑇𝑇3𝜋𝜋2
=  

3𝑉𝑉𝜔𝜔2

2𝑣𝑣𝐷𝐷3𝜋𝜋2
 

(3.7.18) 

where vL is the velocity of the longitudinal wave and vT is the velocity of the transverse waves. The 
Debye velocity can be deduced from that equation as: 

 
3
𝑣𝑣𝐷𝐷3

=
1
𝑣𝑣𝐿𝐿3

+  
2
𝑣𝑣𝑇𝑇3

 (3.7.19) 

6. Total energy of lattice vibration – Debye model 
To calculate the total energy of lattice vibration using the Debye model, we need the energy of 

lattice vibration as calculated in section 5: 

𝐸𝐸𝑣𝑣𝑚𝑚𝑣𝑣 =  �𝐷𝐷(𝜔𝜔)
ђ𝜔𝜔

exp (ђ𝜔𝜔 𝑘𝑘𝐵𝐵𝑇𝑇) − 1⁄  d𝜔𝜔 (3.5.6) 

By substituting the density of states D(ω), obtained as equation (9.3.18)  

𝐷𝐷(𝜔𝜔) =  
3𝑉𝑉𝜔𝜔2

2𝑣𝑣𝐷𝐷3𝜋𝜋2
 

(3.7.18) 

to equation (3.5.6), we obtain the total energy of lattice vibration of the Debye model: 

𝐸𝐸𝑣𝑣𝑚𝑚𝑣𝑣 =  �  
3𝑉𝑉𝜔𝜔2

2𝑣𝑣𝐷𝐷3𝜋𝜋2
ђ𝜔𝜔d𝜔𝜔

exp (ђ𝜔𝜔 𝑘𝑘𝐵𝐵𝑇𝑇) − 1⁄

𝜔𝜔𝐷𝐷

0
 

(3.7.19) 

The upper bound of the integration is not limitless but ωD with 𝜔𝜔𝐷𝐷 =  𝑣𝑣D𝑘𝑘max  known as the Debye 
(cut-off) frequency. The maximum ω in a lattice is due to the discreteness of atoms. 
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Fig. 4. Conceptual illustration of the relationship between D and ωD.  
 

6. Simpler formula of the Debye model 
Let’s simplify the formula of the Debye model. We know that the number of modes with k < kmax 

is equal to the number of atoms N from equation 3.7.16. This gives us: 

𝑁𝑁 =  𝑛𝑛m =
𝑉𝑉𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

3

6𝜋𝜋2𝑣𝑣𝐷𝐷3
→  𝜔𝜔𝐷𝐷 =  𝑣𝑣𝐷𝐷�

6𝜋𝜋2𝑁𝑁
𝑉𝑉

3
 

(3.7.20) 

When we define x as 𝑥𝑥 =  ђω
𝑘𝑘B𝑇𝑇

 it gives us: 

𝜔𝜔 =  
𝑘𝑘B𝑇𝑇𝑥𝑥
ђ

 (3.7.21) 

 
To calculate the Debye temperature Θ, we need equation (3.7.19):  

𝐸𝐸vib =  ∫D(ω) ђω
𝑒𝑒𝑚𝑚𝑝𝑝 (ђω kBT)−1⁄  𝑑𝑑ω and ωD  𝑥𝑥D =  ђωD

𝑘𝑘B𝑇𝑇
=  ђωD

𝑘𝑘B
 1
𝑇𝑇

= 𝛩𝛩D
𝑇𝑇

 , which gives us: 

𝛩𝛩 =  
ђωD

𝑘𝑘B
 (3.7.22) 

To further simplify the formula of the Debye model, we need the following formulas: 

𝜔𝜔 =  𝑘𝑘B𝑇𝑇
ђ

 𝑥𝑥,𝑑𝑑ω =  𝑘𝑘B𝑇𝑇
ђ

 d𝑥𝑥 and 𝑥𝑥D = ђωD
𝑘𝑘B𝑇𝑇

 . 

The total energy of lattice vibration Evib from equation (3.7.19) can then be calculated as: 

𝐸𝐸𝑣𝑣𝑚𝑚𝑣𝑣 =  �  
3𝑉𝑉𝜔𝜔2

2𝑣𝑣𝐷𝐷3𝜋𝜋2
ђ𝜔𝜔d𝜔𝜔

exp (ђ𝜔𝜔 𝑘𝑘𝐵𝐵𝑇𝑇) − 1⁄ = 
𝜔𝜔𝐷𝐷

0

3𝑉𝑉 𝑘𝑘B𝑇𝑇ђ
2

2𝑣𝑣𝐷𝐷3𝜋𝜋2
ђ𝑘𝑘B𝑇𝑇ђ  ђωD

𝑘𝑘B𝑇𝑇

exp (ђ𝑘𝑘B𝑇𝑇ђ 𝑘𝑘𝐵𝐵𝑇𝑇) − 1�

=  
3𝑉𝑉𝑘𝑘𝐵𝐵

4𝑇𝑇4

2𝜋𝜋2𝑣𝑣𝐷𝐷3ђ3
 �

𝑥𝑥4𝑖𝑖𝑥𝑥
exp(𝑥𝑥) − 1

𝛩𝛩D 𝑇𝑇⁄

0
  

(3.7.23) 

This means that 𝑥𝑥D = 𝛩𝛩D
𝑘𝑘B

 and ΘD = ђωD
𝑘𝑘B

  . 
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7. Debye temperature 

The Debye temperature is calculated with 𝜔𝜔𝐷𝐷 =  𝑣𝑣𝐷𝐷�
6𝜋𝜋2N
V

3
 from equation (3.7.20) as: 

𝛩𝛩D =  
ђωD

𝑘𝑘B
=  

ђ
𝑘𝑘B

 𝑣𝑣𝐷𝐷�
6𝜋𝜋2𝑁𝑁
𝑉𝑉

3
=  
ђ𝑣𝑣𝐷𝐷
𝑘𝑘B

 �
6𝜋𝜋2𝑁𝑁
𝑉𝑉

3
 (3.7.24) 

Therefore, at low temperature T we have low ω states, which means that low energy E states are 
filled, but high ω states are not excited. Higher ω states are filled with increasing temperature T, but 
frequency 𝜔𝜔𝐷𝐷  is a limitation. At ΘD, the excited ω reaches ωD and above ΘD all modes of lattice 
vibration are excited.  

The Debye temperature is a material constant. From equation (3.7.24) we see that two parameters 
are intrinsic for materials - sound velocity 𝑣𝑣𝐷𝐷  and 𝑁𝑁

𝑉𝑉
. Therefore, if the sound velocity is high, the Debye 

temperature is high. If lattice spacing 𝑎𝑎 =  �𝑁𝑁

𝑉𝑉

3
 is solved to 𝑁𝑁

𝑉𝑉
=  1

𝑚𝑚3
  it becomes apparent that Debye 

temperature ΘD is higher with smaller a, i.e. a denser phase. This allows the normalization of the 
temperature dependence of the vibrational properties of different velocities and densities against 𝑇𝑇 𝛩𝛩D⁄ . 

8. Debye heat capacity 

The density of state of the Debye model 𝐷𝐷(𝜔𝜔)  =  3𝑉𝑉𝜔𝜔2
2𝑣𝑣𝐷𝐷3𝜋𝜋2

 is applied to the expression of heat 
capacity (equation 3.7.23) and gives: 

𝐶𝐶𝑣𝑣𝑚𝑚𝑣𝑣  

=  �  
3𝑉𝑉𝜔𝜔2

2𝑣𝑣𝐷𝐷3𝜋𝜋2
ђ2𝜔𝜔2exp (ђ𝜔𝜔 𝑘𝑘𝐵𝐵𝑇𝑇)⁄

𝑘𝑘B𝑇𝑇2exp (ђ𝜔𝜔 𝑘𝑘𝐵𝐵𝑇𝑇) − 1⁄ d𝜔𝜔
𝜔𝜔𝐷𝐷

0

= 
3𝑉𝑉ђ2

2𝑣𝑣𝐷𝐷3𝜋𝜋2𝑘𝑘B𝑇𝑇2
�

𝜔𝜔4exp (ђ𝜔𝜔 𝑘𝑘𝐵𝐵𝑇𝑇)⁄
(exp (ђ𝜔𝜔 𝑘𝑘𝐵𝐵𝑇𝑇) − 1)⁄ 2

𝜔𝜔𝐷𝐷

0
 d𝜔𝜔  

(3.7.23) 

By applying the variable x by 𝜔𝜔 =  𝑘𝑘B𝑇𝑇
ђ

 to (3.7.24) we have: 

𝐶𝐶vib =  
3𝑉𝑉ђ2

2𝑣𝑣𝐷𝐷3𝜋𝜋2𝑘𝑘B𝑇𝑇2
 �

(𝑘𝑘B𝑇𝑇ђ )5 𝑥𝑥4 exp (𝑥𝑥)

(exp(𝑥𝑥) − 1)2
 d𝑥𝑥

𝑚𝑚D

0
 (3.7.25) 

Simplifying equation (3.7.25) gives us the Debye heat capacity: 

𝐶𝐶vib =  
9𝑁𝑁𝑘𝑘B
𝑥𝑥D3

 �
 𝑥𝑥4 exp (𝑥𝑥)

(exp(𝑥𝑥) − 1)2
 d𝑥𝑥

𝑚𝑚D

0
 (3.7.26) 

𝐶𝐶vib =  9𝑁𝑁𝑘𝑘B(
𝑇𝑇
𝛩𝛩D

)�
 𝑥𝑥4 exp (𝑥𝑥)

(exp(𝑥𝑥) − 1)2
 d𝑥𝑥

𝛩𝛩D 𝑇𝑇⁄

0
 

(3.7.27) 

This equation shows that the Debye heat capacity is higher at lower temperatures than the Einstein 
heat capacity (Fig. 5). 
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Fig. 5. Schematic illustration of the comparison between the heat capacity calculated using the 
Debye and Einstein model.  

 

9. High temperature limits of Debye heat capacity 
To calculate the Debye heat capacity at high temperatures, we set the high temperature limit to 𝑇𝑇 →

∞  and 𝑥𝑥 =  ђ𝜔𝜔 𝑘𝑘B𝑇𝑇 → ∞⁄  and exp(𝑥𝑥) → 1 + 𝑥𝑥 → 1, exp(𝑥𝑥) − 1 → 1 + 𝑥𝑥 − 1 → 𝑥𝑥.  Applying this 
to equation (3.7.27) gives: 

1
𝑥𝑥D3

�
 𝑥𝑥4 exp (𝑥𝑥)

(exp(𝑥𝑥) − 1)2
 d𝑥𝑥

𝑚𝑚D

0
→

1
𝑥𝑥D3

�
 𝑥𝑥4  ∙  1

x2
 d𝑥𝑥

𝑚𝑚D

0
=  

1
𝑥𝑥D3

� x2 d𝑥𝑥
𝑚𝑚D

0
→

1
3

 
(3.7.28) 

with 𝑥𝑥D = ђωD 𝑘𝑘B𝑇𝑇⁄ =  𝛩𝛩D 𝑇𝑇⁄    we get 

𝐶𝐶vib =  
9𝑁𝑁𝑘𝑘B
𝑥𝑥D3

(
𝑇𝑇
𝛩𝛩D

)�
 𝑥𝑥4 exp(𝑥𝑥)

(exp(𝑥𝑥) − 1)2  d𝑥𝑥
𝑚𝑚D

0
→ 9𝑁𝑁𝑘𝑘B × 

1
3
→ 3𝑁𝑁𝑘𝑘B  

(3.7.29) 

This formula is called Dulong-Petit law. It states that at high temperature Cvib is nearly a constant 
of 3Nk𝐵𝐵 because all modes are excited. 

10. Low temperature limits of Debye heat capacity 
To calculate the Debye heat capacity at low temperatures, we set the low temperature limit to 𝑇𝑇 →

0 and 𝑥𝑥D = ђωD
𝑘𝑘B𝑇𝑇

=  𝛩𝛩D
𝑇𝑇

 
𝑇𝑇→0
���  ∞ . Applying this gives: 

�
 𝑥𝑥4 exp(𝑥𝑥)

(exp(𝑥𝑥) − 1)2  d𝑥𝑥
𝑚𝑚D

0 𝑚𝑚D→∞
�����

𝜋𝜋4

15
  

(3.7.30) 

This allows calculation of Debye heat capacity at low temperatures as: 

𝐶𝐶vib =  
9𝑁𝑁𝑘𝑘B
𝑥𝑥D3

�
 𝑥𝑥4 exp (𝑥𝑥)

(exp(𝑥𝑥) − 1)2
 d𝑥𝑥

𝑚𝑚D

0
 
𝑇𝑇→0
���  9𝑁𝑁𝑘𝑘B(

𝑇𝑇
𝛩𝛩D

)3  
𝜋𝜋4

15
=  

3
5
𝑁𝑁𝑘𝑘B𝜋𝜋4 (

𝑇𝑇
𝛩𝛩D

)3  
(3.7.31) 

The above equation shows that heat capacity is proportional to T3 at low temperatures. This is called 
the Debye T3 law because the lattice is in 3D and it shows that the mode increases in the three directions 
with increasing temperature (Fig. 6). 
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Fig. 6. Schematic illustration of the Debye T3 law after Rohlf. 
 

11. Comparison of the Debye and Einstein models 
Heat capacity is calculated using the Debye model as 
  

𝐶𝐶vib =  
9𝑁𝑁𝑘𝑘B
𝑥𝑥D3

�
 𝑥𝑥4 exp(𝑥𝑥)

(exp(𝑥𝑥) − 1)2  d𝑥𝑥
𝑚𝑚D

0
  

(3.7.29) 

and using the Einstein model equation (3.5.14) as 

𝐶𝐶vib =  3𝑁𝑁𝑘𝑘B(
𝑇𝑇𝛼𝛼
𝑇𝑇

)2
 exp (𝑇𝑇𝛼𝛼 𝑇𝑇)⁄

[exp (𝑇𝑇𝛼𝛼 𝑇𝑇)⁄ − 1]2
  

(3.5.14) 

 
Comparison shows that the Debye model provides higher Cvib at lower temperatures than the 

Einstein model (Fig. 5). This is because the Einstein model only uses one frequency, which makes 
excitation at low temperatures difficult – whereas in the Debye model lattice vibration frequency starts 
from almost zero and thus makes excitation at low temperatures easy.  

Let’s look at the Einstein and Debye models using the example copper (Cu) (Fig. 7). In the Debye 
model at a temperature T = 343 K 𝜔𝜔 ≤  𝜔𝜔D  =  4.5 × 1013 Hz and in the Einstein model at T = 240 K 
𝜔𝜔 =  𝜔𝜔α  =  3.1 × 1013 Hz using one frequency for calculation. Comparing the quantum number {n} 
at low temperature gives {n} ≈ 0 in the Einstein model with a very low Cv at low temperature, and a 
very large {n} at small ω.  

Comparing the number of nodes (D(ω){n}dω) in the Einstein and Debye models shows that in the 
Debye model D(ω) ∝ ω2 and the regions are lower than the solidus curves. In the Einstein model D(ω) 
is constant and the regions are lower than the broken lines. This means that the number of modes in the 
Einstein model is much smaller than the number of modes in the Debye model at low temperature. 
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Fig. 7. Comparison of Debye and Einstein models using copper as an example. 
 

12. Debye model and real heat capacities 
In the last section, we will look at real heat capacities from real minerals and compare them to those 

calculated using the Debye model (Fig. 8). 
12.1 Simple oxides 

The Debye model generally agrees with the measurements and only slightly underestimates them. 
All modes are excited at ΘD. In fact, they are more excited than predicted from the Debye model. 
12.2 Orthosilicates 

The Debye model generally agrees with the measurements and only slightly overestimates them. 
All modes are excited at ΘD. 
12.1 Tectosilicates 

The Debye model largely overestimates the heat capacity. Even above ΘD, a large proportion of 
modes are not excited. This means that more energy is necessary to excite lattice vibration than expected 
from elasticity. 
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Fig. 7. Comparison of the Debye model with real heat capacities measured on real minerals:             
top – simple oxides, middle – orthosilicates, bottom - tectosilicates. 
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