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3. Lattice vibration 

7. Debye model 

7.1 What is Debye model? 

Debye model predicts the isochoric heat capacity CV of crystals considering the frequency 

dependence of the number of modes as a function of temperature T, which is the most striking difference 

to Einstein model. Although there is a marked inconsistency between the Einstein model and 

experimental results in the low T region, the Debye model succeeds in showing a good agreement in 

the T dependence of CV at low T (CV ∝ T3) for many monatomic solids. 

 

7.2 Lattice vibration 

Crystal is an assemblage of atoms and lattices, which show thermal vibration. The thermal vibration 

generally shows very complicated wave form, but it can be decomposed into a superposition of 

longitudinal and transverse waves. The propagation direction of the first and second ones are parallel 

and perpendicular to the atomic/lattice displacements, respectively. In addition, transverse waves are 

constituted by two components with the different oscillation directions: horizontally and vertically 

oscillating ones. The waves can be further decomposed into a superposition of normal modes (simple 

harmonic motions). In order to count the number of modes, let us consider a one-dimensional (1D) 

model crystal (linear monatomic chain) with the periodic boundary condition as shown in Fig. 3.7.1. 

The periodic boundary condition is favorable for the system with translational symmetry such as crystal 

lattice. If we adopt other boundary conditions, the argument will be essentially the same. The 1D crystal 

contains N (≫ 1) atoms whose interval is a (constant), and there are interactions between adjacent atoms 

via a spring. The length of the crystal L is then given by 

𝐿 = (𝑁 − 1)𝑎 ≈ 𝑁𝑎. (3.7.1) 

 

Fig. 3.7.1. Some normal modes for lattice vibration of the linear monatomic chain. 

 

Then the 1D crystal has the modes with the following wavelengths λ and angular wavenumbers k: 
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Here, ± comes from two propagation directions (from left to right and the other way around). The 

sequence of |k| has a constant interval of 2π/L, and there are 2 × N/2 = N modes in total. In addition, the 

number of modes is finite (section 3.6), because atoms vibrate in the equivalent phase when λ < λmin, 

i.e., λ = a, a/2, a/4, ···. 

  

7.3 Density of states 

Since we determined the wavenumber of the 1D crystal’s modes in section 3.7.2, let us start this 

section from computing the density of states D(ω), which is essential for the heat capacity. D(ω) is the 

number of modes nm at a given frequency ω, which is given by 

𝐷(𝜔)d𝜔 =
d𝑛m
d𝜔

d𝜔 =
d𝑛m
d𝑘

d𝑘

d𝜔
d𝜔. (3.7.4) 

Recall that the interval of |k| is 2π/L (Eq. 3.7.3), dnm/dk turns into 

d𝑛m
d𝑘

= ±
1

2𝜋/𝐿
= ±

𝐿

2𝜋
. (3.7.5) 

In order to derive dk/dω, let us obtain the dispersion relation. Assuming a linear relation between ω and 

k near k = 0 at low T (Fig. 3.7.2), one can approximate ω as a solution of the equation of motion for 

atoms in the 1D crystal: 

𝜔 = √
4𝐶

𝑚
|sin (

𝑘𝑎

2
)| ≅ √

4𝐶

𝑚
|
𝑘𝑎

2
| = √

𝐶

𝑚
𝑎|𝑘|, (3.7.6) 

 

Fig. 3.7.2. Dispersion relation of the lattice vibration for the 1D crystal (solid curve). The black 

broken line indicates the linear dispersion relation assumed in Eq. (3.7.6). Due to the periodic 

boundary condition and the discrete configuration of atoms, the essential region is only −π/a ≤ k < 

π/a (the first Brillouin zone). 
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where C and m are the spring constant and the atomic mass, respectively. Combining the definitions of 

group (vg ≡ dω/dk) and phase (vp ≡ ω/k) velocities (section 3.5), and Eq. (3.7.6), we have 

𝑣g ≡
d𝜔

d𝑘
≈
𝜔

𝑘
= ±√

𝐶

𝑚
𝑎 ≡ 𝑣p. (3.7.7) 

Then dk/dω is 

d𝑘

d𝜔
=
1

𝑣g
≈
1

𝑣p
= ±

1

𝑎
√
𝑚

𝐶
. (3.7.8) 

Substituting Eqs. (3.7.5) and (3.7.8) into Eq. (3.7.4), D(ω) (≥ 0) of the 1D crystal is 

𝐷(𝜔) =
d𝑛m
d𝑘

d𝑘

d𝜔
≈ (±

𝐿

2𝜋
) × (±

1

𝑎
√
𝑚

𝐶
) =

𝐿

2𝜋𝑎
√
𝑚

𝐶
= const. (3.7.9) 

It represents that D(ω) is independent of ω. 

Let us move on to deriving D(ω) for the three-dimensional (3D) crystal. Its reciprocal lattice points 

are aligned with interval of 2π/L in 3D k-space (Fig. 3.7.3), as is the case of the 1D crystal. When we 

divide the 3D k-space into equal cubes including a lattice point (dashed red square in Fig. 3.7.3), its 

volume is 

(
2𝜋

𝐿
)
3

=
8𝜋3

𝑉
, (3.7.10) 

where V (= L3) is the volume of the 3D crystal. Lattice points of interest are those only inside the sphere 

with a radius of kmax (dashed red circle in Fig. 3.7.3), whose volume is 

𝑉𝑘≤𝑘max =
4

3
𝜋𝑘max

3 . (3.7.11) 

 

Fig. 3.7.3. Sliced k-space for the 3D model crystal lattice. The circles represent lattice points, where 

those within the spherical region: |k| ≤ kmax (dashed red circle) are shown by orange circles. The 

solid gray and the dashed red squares, respectively, indicate the first Brillouin zone and the unit 

volume containing a lattice point. 
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Combining Eqs. (3.7.10) and (3.7.11), we obtain the number of modes nm (k-points) such that |k| ≤ kmax: 

𝑛m =
(4/3)𝜋𝑘max

3

8𝜋3/𝑉
=
𝑉𝑘max

3

6𝜋2
. (3.7.12) 

When V is large and a is small (i.e., k is large), nm becomes greater. Based on the low-T approximation 

(vg ≈ vp), one can derive D(ω) at given mode of the 3D crystal: 

𝐷(𝜔) =
d𝑛m
d𝜔

=
d𝑛m
d𝑘

d𝑘

d𝜔
=
d

d𝑘
(
𝑉𝑘3

6𝜋2
)
1

𝑣g
=
𝑉𝑘2

2𝜋2𝑣g
≈
𝑉𝑘2

2𝜋2𝑣p
=
𝑉(𝜔 𝑣p⁄ )

2

2𝜋2𝑣p
  

=
𝑉𝜔2

2𝜋2𝑣p
3 ∝ 𝜔

2. (3.7.13) 

D(ω) of the 3D crystal depends on ω2 up to ωD, which is described in section 3.7.3 (Fig. 3.7.4b). nm = 

0 for any ω except for ωα for the Einstein model (Fig. 3.7.4a). Sum D(ω) up for one longitudinal and 

two transverse waves, 

𝐷(𝜔) =  
𝑉𝑘2

2𝜋2𝑣L
3 +

2𝑉𝑘2

2𝜋2𝑣T
3 =

3𝑉𝜔2

2𝜋2𝑣D
3 . (3.7.14) 

Here, vL and vT are the group velocity of the longitudinal and transverse waves, respectively. Eq. 

(3.7.14) contains Debye sound velocity vD, which is defined as follows: 

3

𝑣D
3 ≡ 

1

𝑣L
3 +

2

𝑣T
3. (3.7.15) 

 

Fig. 3.7.4. A comparison of D(ω) between the Einstein (a) and the Debye (b) models. Here, ωα 

indicates the Einstein frequency, which has a similar meaning in the Einstein model to that of ωD. 

The horizontal and vertical axes are both in arbitrary units. 

 

7.3 Total energy of lattice vibration 

Since we have obtained D(ω) for the 3D-crystal (Eq. 3.7.14), now we have enough information to 

derive its total energy. Firstly, recall that the total energy of the lattice vibration Evib is written as (see 

section 3.4) 

𝐸vib = ∫𝐷(𝜔)
ℏ𝜔

𝑒ℏ𝜔 (𝑘B𝑇)⁄ − 1
d𝜔, (3.7.16) 

where ħ and kB are the reduced Planck constant and the Boltzmann constant, respectively. By 

substituting D(ω) (Eq. 3.7.14) into Eq. (3.7.16), one can show 
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𝐸vib = ∫
3𝑉𝜔2

2𝜋2𝑣D
3

ℏ𝜔

𝑒ℏ𝜔 (𝑘B𝑇)⁄ − 1
d𝜔.

𝜔D

0

 (3.7.17) 

Again, the ω-range for the integration is limited to 0 ≤ ω ≤ ωD (Fig. 3.7.4b), since |k| ≤ kmax = ωD/vD. 

Here, ωD is the Debye (cutoff) frequency. Assume that nm satisfying |k| ≤ kmax is equal to the total number 

of atoms in the 3D crystal N, 

𝑁 = 𝑛m =
𝑉𝑘max

3

6𝜋2
=
𝑉𝜔D

3

6𝜋2𝑣D
3 ,  

∴ 𝜔D = 𝑣D (
6𝜋2𝑁

𝑉
)

1
3

. (3.7.18) 

This assumption is based on the idea that vibrational modes such that |k| > kmax does not exist (Fig. 3.7.4) 

and so does not contribute to Evib. In order to simplify Evib, let us define x ≡ ħω/kBT, and then we have 

ω = kBTx/ħ and dω = (kBT/ħ)dx. If ω = ωD, x becomes xD given by 

𝑥D =
ℏ𝜔D
𝑘B

1

𝑇
=
𝛩D
𝑇
. (3.7.19) 

where ΘD (≡ ħωD/kB) is Debye temperature. By using x and xD, one can rewrite Eq. (3.7.17) as 

𝐸vib = ∫
3𝑉(𝑘B𝑇𝑥 ℏ⁄ )

2

2𝜋2𝑣D
3

𝑘B𝑇𝑥

𝑒𝑥 − 1

𝑘B𝑇𝑥

ℏ
d𝑥

𝑥D

0

  

=
3𝑉𝑘B

4𝑇4

2𝜋2𝑣D
3ℏ3

∫
𝑥4

𝑒𝑥 − 1
d𝑥.

𝑥D=𝛩D 𝑇⁄

0

 (3.7.20) 

Now we can describe Evib in the simple and convenient form that only contains x as an explicit parameter. 

Let us clarify the physical meaning of ΘD. Using Eq. (3.7.18), we can write ΘD as follows: 

𝛩D =
ℏ𝜔D
𝑘B

=
ℏ𝑣D
𝑘B
(
6𝜋2𝑁

𝑉
)

1
3

. (3.7.21) 

Eq. (3.7.21) tells that low-ω (i.e., low-E) states are dominant and high-ω states are not exited at low T. 

The higher-ω states are increasingly fill the energy levels at higher T. ω of excited modes reaches ωD 

at ΘD, above which all modes of lattice vibration become excited. Looking at the parameters of ΘD, vD 

(elastic moduli and density) and N/V = 1/a3 (number density) are intrinsic for materials and others are 

universal constants. Thus, ΘD is a specific constant to materials. ΘD is high when vD is high (rigid and 

light) and a is small (densely packed atoms). Therefore, ΘD is an index of the T dependence of the 

vibrational properties for materials whose sound velocity and number density are different to each other. 

Since ΘD is temperature literally, plotting the vibrational properties against the normalized temperature 

(T/ΘD = xD
−1) is an effective measure to compare the vibrational properties for various materials. 

 

7.5 Debye heat capacity 

Now we are ready for deriving the Debye heat capacity Cvib by using the obtained Evib and ΘD. Since 

Cvib is a T derivative of Evib (Eq. 3.7.17), 

𝐶vib ≡
d𝐸vib
d𝑇

= ∫
3𝑉𝜔2

2𝜋2𝑣D
3

d

d𝑇
 

ℏ𝜔

𝑒ℏ𝜔 (𝑘B𝑇)⁄ − 1
d𝜔

𝜔D

0

 

= ∫
3𝑉𝜔2

2𝜋2𝑣D
3

ℏ2𝜔2𝑒ℏ𝜔 (𝑘B𝑇)⁄

𝑘B𝑇
2(𝑒ℏ𝜔 (𝑘B𝑇)⁄ − 1)2

d𝜔
𝜔D

0
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=
3𝑉ℏ2

2𝜋2𝑣D
3𝑘B𝑇

2
∫

𝜔4𝑒ℏ𝜔 (𝑘B𝑇)⁄

(𝑒ℏ𝜔 (𝑘B𝑇)⁄ − 1)2
d𝜔

𝜔D

0

. (3.7.22) 

Apply ω = kBTx/ħ and dω = (kBT/ħ)dx to Eq. (3.7.22) 

𝐶vib =
3𝑉ℏ2

2𝜋2𝑣D
3𝑘B𝑇

2
∫

(𝑘B𝑇𝑥 ℏ⁄ )
4𝑒𝑥

(𝑒𝑥 − 1)2
𝑘B𝑇

ℏ
d𝑥

𝑥D

0

 

=
3𝑉ℏ2

2𝜋2𝑣D
3𝑘B𝑇

2
(
𝑘B𝑇

ℏ
)
5

∫
𝑥4𝑒𝑥

(𝑒𝑥 − 1)2
d𝑥

𝑥D

0

 

=
9𝑁𝑘B
6𝜋2

1

𝑁 𝑉⁄
(
𝑘B𝑇

ℏ𝑣D
)
3

∫
𝑥4𝑒𝑥

(𝑒𝑥 − 1)2
d𝑥

𝑥D

0

 

 

= 9𝑁𝑘B {
𝑘B𝑇

ℏ𝑣D(6𝜋
2𝑁 𝑉⁄ )1 3⁄

}
3

∫
𝑥4𝑒𝑥

(𝑒𝑥 − 1)2
d𝑥

𝑥D

0

. (3.7.23) 

Eq. (3.7.23) becomes convenient with helps of Eqs. (3.7.19) and (3.7.21): 

𝐶vib = 9𝑁𝑘B (
𝑇

𝛩D
)
3

∫
𝑥4𝑒𝑥

(𝑒𝑥 − 1)2
d𝑥

𝛩D 𝑇⁄

0

 (3.7.24) 

=
9𝑁𝑘B

𝑥D
3 ∫

𝑥4𝑒𝑥

(𝑒𝑥 − 1)2
d𝑥

𝑥D

0

. (3.7.24’) 

Now we would like to see that the behavior of Cvib under extreme T conditions. In the limit T → ∞ 

and x → +0, 

𝐶vib =
9𝑁𝑘B

𝑥D
3 ∫

𝑥4𝑒𝑥

(𝑒𝑥 − 1)2
d𝑥

𝑥D

0

𝑥→+0
→   

9𝑁𝑘B

𝑥D
3 ∫

𝑥4

𝑥2
d𝑥

𝑥D

0

=
9𝑁𝑘B

𝑥D
3 ∫ 𝑥2d𝑥

𝑥D

0

= 3𝑁𝑘B, (3.7.25) 

where we used 

𝑒𝑥
𝑥→+0
→   1, (3.7.26) 

𝑒𝑥 − 1 = 𝑥 +
1

2!
𝑥2 +

1

3!
𝑥3 +⋯

𝑥→+0
→   𝑥 − 1 → 𝑥. (3.7.27) 

The high-T limit of Cvib is consistent with Dulong-Petit law and this result manifests that all modes are 

excited. On the other hand, taking the limit T→ +0, xD → ∞, 

𝐶vib =
9𝑁𝑘B

𝑥D
3 ∫

𝑥4𝑒𝑥

(𝑒𝑥 − 1)2
d𝑥

𝑥D

0

𝑥D→∞
→    

9𝑁𝑘B

𝑥D
3

4𝜋4

15
=
12𝜋4𝑁𝑘B

5
(
𝑇

𝛩D
)
3

∝ 𝑇3, (3.7.28) 

where, the following is used: 

∫
𝑥4𝑒𝑥

(𝑒𝑥 − 1)2
d𝑥

∞

0

= Γ(5)ζ(4) = 4! ×
𝜋4

90
=
4𝜋4

15
. (3.7.29) 

Here, Γ(‧) and ζ(‧) are gamma and Riemann zeta functions, respectively (see Appendix A for the detailed 

derivation of Eq. (3.7.29)). The Debye heat capacity is in much better agreement with experiments than 

CV,Es at low T (Fig. 3.7.5). Eq. (3.7.28) tells that Cvib is proportional to T3 at low T (Debye T3 law). This 

law holds true because the number of excited atoms depends on T3 (see Appendix B for details). 

However, Cvib deviate from the experimental data below ~6 K, as can be seen in the data for copper 

(transition metal). This is caused by the contribution to thermal conductivity from electrons increases 

with decreasing T. Contrastively, the Debye model matches the experiments better for diamond and 

lead (main-group elements). 

https://en.wikipedia.org/wiki/Dulong%E2%80%93Petit_law
https://en.wikipedia.org/wiki/Gamma_function
https://en.wikipedia.org/wiki/Riemann_zeta_function
https://en.wikipedia.org/wiki/Copper
https://en.wikipedia.org/wiki/Transition_metal
https://en.wikipedia.org/wiki/Thermal_conductivity
https://en.wikipedia.org/wiki/Electron
https://en.wikipedia.org/wiki/Diamond
https://en.wikipedia.org/wiki/Lead
https://en.wikipedia.org/wiki/Main-group_element
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Fig. 3.7.5. Comparisons of the experimental data to the Debye and the Einstein models for the molar 

isochoric heat capacity (CV/NkB) of C (diamond) (Desnoyehs and Morrison, 1958; Victor, 1962), 

Cu (White and Collocott, 1984), and Pb (Stedman et al., 1967) in linear (a) and logarithmic (b) 

representations. The horizontal gray line at CV/NkB = 3 indicates the Dulong-Petit limit. The gray 

triangle in (b) is an eye guide for the dependence on T3. 

 

Let us compare Cvib and CV,Es at low T and consider the cause of difference. Cvib is higher than CV,Es 

at lower T (Fig. 3.7.5). Since the Einstein model considers only one frequency (Fig. 3.7.4a) and the low-

E mode is absent, atoms are more unlikely to excite at low T. In contrast, the Debye model considers 

various frequencies (Fig. 3.7.4b), and hence, atoms can excite even at low T. Let us quantitatively 

consider the cause of this difference by comparing the average quantum number of quantum harmonic 

oscillators 〈n〉. In the case of copper, for example, ΘD =  347 K (Stewart, 1983) and so ωD = 4.5 × 1013 

Hz. The Einstein frequency of copper is ωα = 3.0 × 1013 Hz, and so its Einstein temperature is Tα = 229 

K. ωα is obtained by fitting CV,Es to the experimental data (White and Collocott, 1984), where CV,Es is 

given by 

𝐶𝑉,Es = 3𝑁𝑘B (
𝑇𝛼
𝑇
)
2 𝑒𝑇𝛼 𝑇⁄

(𝑒𝑇𝛼 𝑇⁄ − 1)2
= 3𝑁𝑘B (

ℏ𝜔𝛼
𝑘B𝑇

)
2 𝑒ℏ𝜔 (𝑘B𝑇)⁄

(𝑒ℏ𝜔 (𝑘B𝑇)⁄ − 1)2
. (3.7.30) 

Using these parameters, let us compare 〈n〉 for the Debye and the Einstein models. 〈n〉 is given by 

https://en.wikipedia.org/wiki/Carbon
https://en.wikipedia.org/wiki/Linear_scale
https://en.wikipedia.org/wiki/Logarithmic_scale
https://en.wikipedia.org/wiki/Quantum_number
https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator
https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator
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〈𝑛〉 =
1

𝑒ℏ𝜔 (𝑘B𝑇)⁄ − 1
. (3.7.31) 

As shown in Fig. 3.7.6, 〈n〉 for the Debye model at low ω (i.e., low T) is much larger than that for the 

Einstein model. One can compute CV as 

𝐶𝑉 ≡
d𝐸

d𝑇
∝
d

d𝑇
∫𝐷(𝜔)〈𝑛〉d𝑥, (3.7.32) 

and hence, Cvib becomes larger at low T. In addition, the much larger area ∫ D(ω)dω for the Debye 

model (Fig. 3.7.4) also makes Cvib larger, although it is difficult to discuss quantitatively. 

 

Fig. 3.7.6. Comparisons of the average quantum number 〈n〉 between the Debye and the Einstein 

models for copper at low T. 

 

When we compare the Debye model to experiments for some rock-forming minerals, how these are 

consistent with each other varies with composition and/or crystal structure. In the case of simple oxides 

such as periclase and corundum (Kieffer, 1979), the Debye model generally matches the measurements, 

except for a slight underestimation in the intermediate T-range. The deviation suggests that, in these 

real crystals, all modes are excited at ΘD (ΘD = 910 K for periclase and ΘD = 1036 K for corundum) and 

the average energy level filled by modes is higher than expected from the Debye model. When we look 

at the heat capacity for some orthosilicates such as forsterite and pyrope (Kieffer, 1980), the Debye 

model generally agrees to the experiments as well. But the Debye model slightly overestimates CV above 

~200 K, implying that a small proportion of modes are not excited at ΘD (ΘD = 756 K for forsterite and 

ΘD = 794 K for pyrope). However, CV of some tectosilicates such as quartz and albite (Kieffer, 1979) 

are poorly predicted by the Debye model. The Debye model largely overestimates CV above ~50–100 

K, suggesting that many of modes are not excited even above ΘD (ΘD = 560 K for quartz and ΘD = 472 

K for albite). Thus, atoms need more energy to excite lattice vibration than expected from elasticity. 

Strictly speaking, Eq. (3.7.24’) is just an interpolant for the heat capacity. The behavior of CV at 

extreme temperatures (the Debye T3 law and Dulong-Petit law) reflects the essence of the lattice 

vibration and is ubiquitous for various crystals. However, CV at intermediate T condition is sensitive to 

the applied model and individual properties of crystals (e.g., composition, crystal structure). Eq. 

(3.7.24’) only provides us with CV as a rigid result of model calculation for the system with the idealized 

https://en.wikipedia.org/wiki/Mineral
https://en.wikipedia.org/wiki/Crystal_structure
https://en.wikipedia.org/wiki/Oxide
https://en.wikipedia.org/wiki/Periclase
https://en.wikipedia.org/wiki/Corundum
https://en.wikipedia.org/wiki/Silicate_mineral#Nesosilicates_or_orthosilicates
https://en.wikipedia.org/wiki/Forsterite
https://en.wikipedia.org/wiki/Pyrope
https://en.wikipedia.org/wiki/Silicate_mineral#Tectosilicates
https://en.wikipedia.org/wiki/Quartz
https://en.wikipedia.org/wiki/Albite
https://en.wikipedia.org/wiki/Elasticity_(physics)
https://en.wikipedia.org/wiki/Interpolation
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lattice vibration. Hence, we cannot expect that the Debye model produces the enough precise CV for 

real crystals which have complicated structure and interatomic potential. 

 

7.6 Appendix A: Derivation of Eq. (3.7.29) 

This section deals with the detailed calculations of Eq. (3.7.29). Firstly, Γ(n + 1) and ζ(n) are, 

respectively, defined as 

Γ(𝑛 + 1) =  ∫ 𝑡𝑛𝑒−𝑡d𝑡
∞

0

= 𝑛Γ(𝑛) = 𝑛!, (3.7.33) 

ζ(𝑛) =∑
1

𝑠𝑛

∞

𝑠=1

. (3.7.34) 

Here, n and s are both natural numbers. We rewrite Γ(n + 1) as follows by substituting t = sx: 

Γ(𝑛 + 1) = ∫ (𝑠𝑥)𝑛𝑒−𝑠𝑥𝑠d𝑥
∞

0

= 𝑠𝑛∫ 𝑥𝑛𝑠𝑒−𝑠𝑥d𝑥
∞

0

, (3.7.35) 

∴
1

𝑠𝑛
=

1

Γ(𝑛 + 1)
∫ 𝑥𝑛𝑠𝑒−𝑠𝑥d𝑥
∞

0

. (3.7.36) 

Substitute Eq. (3.7.36) into Eq (3.7.34), 

ζ(𝑛) =∑
1

Γ(𝑛 + 1)
∫ 𝑥𝑛𝑠𝑒−𝑠𝑥d𝑥
∞

0

∞

𝑠=1

  

=
1

Γ(𝑛 + 1)
∫ 𝑥𝑛∑𝑠𝑒−𝑠𝑥d𝑥

∞

𝑠=1

∞

0

. (3.7.37) 

Here, the infinite series in Eq. (3.7.37) is expanded as 

∑𝑠𝑒−𝑠𝑥
∞

𝑠=1

= 𝑒−𝑥 + 2𝑒−2𝑥 + 3𝑒−3𝑥 +⋯. (3.7.38) 

Multiplying both sides of Eq. (3.7.38) by ex, 

𝑒𝑥∑𝑠𝑒−𝑠𝑥
∞

𝑠=1

= 1 + 2𝑒−𝑥 + 3𝑒−2𝑥 + 4𝑒−3𝑥 +⋯. (3.7.39) 

Subtracting Eq. (3.7.38) from Eq. (3.7.39), 

(𝑒𝑥 − 1)∑𝑠𝑒−𝑠𝑥
∞

𝑠=1

= 1 + 𝑒−𝑥 + 𝑒−2𝑥 + 𝑒−3𝑥 +⋯  

= 1 +∑𝑒−𝑠𝑥
∞

𝑠=1

= 1 +
𝑒−𝑥

1 − 𝑒−𝑥
=

𝑒𝑥

𝑒𝑥 − 1
, (3.7.40) 

∴∑𝑠𝑒−𝑠𝑥
∞

𝑠=1

=
𝑒𝑥

(𝑒𝑥 − 1)2
. (3.7.41) 

Combining Eqs. (3.7.37) and (3.7.41), we find 

ζ(𝑛) =
1

Γ(𝑛 + 1)
∫

𝑥𝑛𝑒𝑥

(𝑒𝑥 − 1)2
d𝑥

∞

0

, (3.7.42) 

https://en.wikipedia.org/wiki/Interatomic_potential
https://en.wikipedia.org/wiki/Series_(mathematics)
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∴ Γ(𝑛 + 1)ζ(𝑛) = ∫
𝑥𝑛𝑒𝑥

(𝑒𝑥 − 1)2
d𝑥

∞

0

. (3.7.43) 

If n = 4, we have Eq. (3.7.28) by using Γ(n + 1) = n! (Eq. 3.7.33) and ζ(4) = π4/90 (the derivation is 

omitted). ζ(4) can be computed by deriving Fourier series of the function f(x) = x2 and by substituting 

the obtained Fourier coefficients into Parseval’s identity. 

 

7.7 Appendix B: Why the Debye T3 law holds true? 

This section is dedicated to giving a rough evaluation why CV is proportional to T3 at low T. Let a 

crystal be at enough low T that satisfies T ≪ ħωD/kB and let us assume vT ≈ vL ≈ vD. By the way, it is 

known that vL ≈ √3vT and thus vD ≈ 1.36vT for Earth-forming rocks. Even at such low T, not all harmonic 

oscillators do not ‘feel’ cold. Whether the system is hot or cold for oscillators is rather dependent on 

the frequency for each oscillator. In this case, the system is cold for the oscillators such that ω ≳ kBT/ħ, 

while the system is hot for those satisfying ω ≲ kBT/ħ. Let us roughly estimate Cvib based on this point 

of view. Since only excited modes contribute to the heat capacity, we need to obtain the number of 

excited modes (nactive). One can rewrite the condition such that the oscillators feel hot by using the 

dispersion relation at low T: ω ≈ vD|k| ≲ kBT/ħ, and hence, |k| ≲ kBT/(ħvD). Thus, as we derived Eq. 

(3.7.12), we can similarly approximate nactive as follows: 

𝑛active~
(4 3⁄ )𝜋(𝑘B𝑇 ℏ𝑣D⁄ )3

8𝜋3/𝑉
=
𝑘B
3𝑉𝑇3

6𝜋2ℏ3𝑣D
3 . (3.7.44) 

Assume that each excited oscillator has a heat capacity of approximately kB, Cvib can be estimated as 

𝐶vib~3𝑛active𝑘B~
𝑘B
4𝑉𝑇3

2𝜋2ℏ3𝑣D
3 , (3.7.45) 

where the tripling comes from three oscillation directions of the modes. Here, recall that Eq. (3.7.28) is 

rewritten as follows with the help of Eq. (3.7.21): 

lim
𝑥D→∞

𝐶vib =
12𝑁𝑘B𝜋

4

5
(
𝑇

𝛩D
)
3

=
2𝜋2𝑘B

4𝑉𝑇3

5ℏ3𝑣D
3 . (3.7.28’) 

Albeit the very rough evaluation, Eq. (3.7.45) matches Eq. (3.7.28’) well in terms of dependencies 

between Cvib and each parameter. Therefore, we conclude that the Debye T3 law works for low-T crystals 

because the number of excited oscillators is proportional to T3. 
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