
Chapter 3. Lattice vibration 
Section 4. Einstein model for heat capacity. 
 Goal of this section: To obtain a heat capacity model of a crystal by assuming that the lattice 

vibrates with a single frequency.  
 Flow derivation 
 The energy levels of one-dimensional quantum harmonic oscillator.  
 The average quantum number of the harmonic oscillators. 

 Planck distribution 
 Total vibrational energy 
 Differentiation of the total vibrational energy by temperature to obtain a heat capacity. 

3.4.1 Total vibrational energy 
Sub-total vibrational energy at a given frequency (𝜔𝜔𝑖𝑖), equals the number of vibrational modes (𝐷𝐷(𝜔𝜔)), 
multiplied average vibrational energy (〈𝜀𝜀(𝜔𝜔)〉).  

𝐸𝐸𝑖𝑖 = 𝐷𝐷(𝜔𝜔𝑖𝑖)〈𝜀𝜀(𝜔𝜔𝑖𝑖)〉 

(3.4.1) 

The total energy of the lattice vibration equals the sum of sub-total vibrational energy at each frequency. 
The equivalent estimation is integrating the total frequency of the product of number of vibrational modes 
and the average vibrational energy. 

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �𝐸𝐸𝑖𝑖
𝑖𝑖

= �𝐸𝐸(𝜔𝜔)𝑑𝑑𝜔𝜔 = �𝐷𝐷(𝜔𝜔)〈𝜀𝜀(𝜔𝜔)〉 𝑑𝑑𝜔𝜔 

(3.4.2) 

3.4.2 Energy level of quantum mechanical harmonic oscillator 

Quantum-mechanical harmonic oscillator model has the energy levels of a particular mode with the 
angular frequency 𝜔𝜔 and its harmonics 𝜀𝜀𝑛𝑛, as expressed in equation 3.4.3: 

𝜀𝜀𝑛𝑛 = (𝑛𝑛 +
1
2

)ℏ𝜔𝜔 

(3.4.3) 

Where 𝑛𝑛: quantum number. 𝑛𝑛 = 0 term: zero-point energy or fundamental mode: 

𝜀𝜀0 =
1
2
ℏ𝜔𝜔 

This fundamental expression also represents a single wavelength as shown in figure 1, the sequential higher 
quantic energy levels 𝑛𝑛 = 1,2,3 … increase as a function of equation 3.4.3 and also implied representation 
of an increased number of wavelengths. 

 

https://en.wikipedia.org/wiki/Heat_capacity
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator
https://en.wikipedia.org/wiki/Planck_relation


 

Figure 1. Representation of the quantic energy levels n of a quantum model mechanical harmonic oscillator. Source:  

 

3.4.3 Relative population of each energy level 

Let us consider the fraction 𝑁𝑁𝑛𝑛
𝑁𝑁

 of an oscillator with the 𝑛𝑛_𝑡𝑡ℎ  energy at a given frequency 𝜔𝜔  and a 
temperature, 𝑇𝑇. This can be obtained by estimating the probability to have the 𝑛𝑛_𝑡𝑡ℎ level of energy divided 
by the sum of probabilities for all levels. 

The probability can be estimated using the Boltzmann distribution: 𝑃𝑃𝑛𝑛 ∝  𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝜀𝜀𝑛𝑛
𝑘𝑘𝐵𝐵𝑇𝑇

� 

𝑁𝑁𝑛𝑛
𝑁𝑁

=

𝑒𝑒𝑒𝑒𝑒𝑒�
−(𝑛𝑛 + 1

2)ℏ𝜔𝜔
𝑘𝑘𝐵𝐵𝑇𝑇

�

∑ 𝑒𝑒𝑒𝑒𝑒𝑒�
−(𝑠𝑠 + 1

2)ℏ𝜔𝜔
𝑘𝑘𝐵𝐵𝑇𝑇

�∞
𝑠𝑠=1

=
𝑒𝑒𝑒𝑒𝑒𝑒(−𝑛𝑛ℏ𝜔𝜔𝑘𝑘𝐵𝐵𝑇𝑇

)

∑ 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑠𝑠ℏ𝜔𝜔𝑘𝑘𝐵𝐵𝑇𝑇
)𝑠𝑠

 

(3.4.4) 

The result of equation 3.4.4 is due to the cancelation of the  1
2
 constant factor found in the numerator and 

denominator. 

 



3.4.4 Planck distribution 

To obtain the average quantum number 〈𝑛𝑛〉. This is equal to the sum of the product of the quantum 
number 𝑆𝑆 and the relative population of each energy level as expressed in the following equation:  

〈𝑛𝑛〉 = �𝑆𝑆
𝑁𝑁𝑠𝑠
𝑁𝑁

= �𝑆𝑆
𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑠𝑠ℏ𝜔𝜔𝑘𝑘𝐵𝐵𝑇𝑇

)

∑ 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑒𝑒ℏ𝜔𝜔𝑘𝑘𝐵𝐵𝑇𝑇
)𝑝𝑝

=
𝑠𝑠𝑠𝑠

 ∑ 𝑠𝑠 �𝑒𝑒𝑒𝑒𝑒𝑒(− ℏ𝜔𝜔
𝑘𝑘𝐵𝐵𝑇𝑇

)�
𝑠𝑠

𝑠𝑠  

∑ �𝑒𝑒𝑒𝑒𝑒𝑒(− ℏ𝜔𝜔
𝑘𝑘𝐵𝐵𝑇𝑇

)�
𝑝𝑝

𝑝𝑝  

=
 ∑ 𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠  
∑ 𝑒𝑒𝑝𝑝𝑝𝑝  

= �
𝑒𝑒

(1 − 𝑒𝑒)2
�

1
1− 𝑒𝑒

=�
𝑒𝑒

1 − 𝑒𝑒
 

(3.4.5) 

Being 𝑒𝑒 = 𝑒𝑒𝑒𝑒𝑒𝑒 �− ℏ𝜔𝜔
𝑘𝑘𝐵𝐵𝑇𝑇

�. Therefore, multiplying and dividing by the inverse conjugate equation (3.4.5) 
can be expressed like equation 3.4.6 as shown below: 

〈𝑛𝑛〉 =
𝑒𝑒𝑒𝑒𝑒𝑒 �− ℏ𝜔𝜔

𝑘𝑘𝐵𝐵𝑇𝑇
�

1 − exp �− ℏ𝜔𝜔
𝑘𝑘𝐵𝐵𝑇𝑇

�
=

𝑒𝑒𝑒𝑒𝑒𝑒 �− ℏ𝜔𝜔
𝑘𝑘𝐵𝐵𝑇𝑇

�  𝑒𝑒𝑒𝑒𝑒𝑒 � ℏ𝜔𝜔𝑘𝑘𝐵𝐵𝑇𝑇
�

�1− 𝑒𝑒𝑒𝑒𝑒𝑒 �− ℏ𝜔𝜔
𝑘𝑘𝐵𝐵𝑇𝑇

�� 𝑒𝑒𝑒𝑒𝑒𝑒 � ℏ𝜔𝜔𝑘𝑘𝐵𝐵𝑇𝑇
�

=
1

𝑒𝑒𝑒𝑒𝑒𝑒 � ℏ𝜔𝜔𝑘𝑘𝐵𝐵𝑇𝑇
� − 1

 

(3.4.6) 

Planck distribution. Is the average energy of an oscillator with an angular frequency 𝜔𝜔 at a temperature 𝑇𝑇: 

〈𝜀𝜀(𝜔𝜔)〉 = (〈𝑛𝑛〉+
1
2

)ℏ𝜔𝜔 ≈ 〈𝑛𝑛〉ℏ𝜔𝜔 =
ℏ𝜔𝜔

𝑒𝑒𝑒𝑒𝑒𝑒 � ℎ𝜔𝜔𝑘𝑘𝐵𝐵𝑇𝑇
� − 1

 

(3.4.7) 

 

3.4.5 Total vibrational energy 

The total vibrational energy of the lattice, is he sum of the average energy of the quantum oscillator: 

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �〈𝜀𝜀(𝜔𝜔𝑖𝑖)〉  = �
ℏ𝜔𝜔𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒 �ℏ𝜔𝜔𝑖𝑖
𝑘𝑘𝐵𝐵𝑇𝑇

� − 1𝑖𝑖𝑖𝑖

 

(3.4.8) 

Each frequency can have more than one mode due to different 𝑘𝑘�⃗  and polarization. Approximating 
equation (3.4.5) by integrating: 

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �𝐷𝐷(𝜔𝜔)
ℏ𝜔𝜔𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒 �ℏ𝜔𝜔𝑖𝑖
𝑘𝑘𝐵𝐵𝑇𝑇

� − 1
 𝑑𝑑𝜔𝜔 

(3.4.9) 



Where 𝐷𝐷(𝜔𝜔): density states as a function of 𝜔𝜔. The Planck distribution takes care of the distribution at a 
given 𝜔𝜔. 

 

3.4.6 Heat Capacity 

Heat capacity 𝐶𝐶:𝑇𝑇 derivate of 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

𝐶𝐶 =
𝑑𝑑𝐸𝐸𝑣𝑣𝑖𝑖𝑣𝑣
𝑑𝑑𝑇𝑇

=
𝑑𝑑
𝑑𝑑𝑇𝑇

�𝐷𝐷(𝜔𝜔)
ℏ𝜔𝜔

𝑒𝑒𝑒𝑒𝑒𝑒 � ℏ𝜔𝜔𝑘𝑘𝐵𝐵𝑇𝑇
� − 1

 𝑑𝑑𝜔𝜔 

(3.4.10) 

We assume that density states 𝐷𝐷(𝜔𝜔): approximately independent from temperature 𝑇𝑇 

𝐶𝐶 = �𝐷𝐷(𝜔𝜔)
ℏ𝜔𝜔

𝑒𝑒𝑒𝑒𝑒𝑒 � ℏ𝜔𝜔𝑘𝑘𝐵𝐵𝑇𝑇
� − 1

 𝑑𝑑𝜔𝜔 

= �𝐷𝐷(𝜔𝜔)

⎝

⎛−
ℏ𝜔𝜔
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2
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⎞ 𝑑𝑑
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1
𝑇𝑇
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= �𝐷𝐷(𝜔𝜔)

⎝
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ℏ𝜔𝜔

�𝑒𝑒𝑒𝑒𝑒𝑒( ℏ𝜔𝜔𝑘𝑘𝐵𝐵𝑇𝑇
)− 1�

2

⎠

⎞�𝑒𝑒𝑒𝑒𝑒𝑒 �
ℏ𝜔𝜔
𝑘𝑘𝐵𝐵𝑇𝑇

���−
ℏ𝜔𝜔
𝑘𝑘𝐵𝐵

1
𝑇𝑇2
�𝑑𝑑𝜔𝜔 

= �𝐷𝐷(𝜔𝜔)
ℎ2𝜔𝜔2𝑒𝑒𝑒𝑒𝑒𝑒 � ℏ𝜔𝜔𝑘𝑘𝐵𝐵𝑇𝑇

�

𝑘𝑘𝐵𝐵𝑇𝑇2 �𝑒𝑒𝑒𝑒𝑒𝑒 �
ℏ𝜔𝜔
𝑘𝑘𝐵𝐵𝑇𝑇

� − 1�
2 𝑑𝑑𝜔𝜔 

(3.4.11) 

= �𝐷𝐷(𝜔𝜔)𝑘𝑘𝐵𝐵
� ℏ𝜔𝜔𝑘𝑘𝐵𝐵𝑇𝑇

�
2
𝑒𝑒𝑒𝑒𝑒𝑒 � ℏ𝜔𝜔𝑘𝑘𝐵𝐵𝑇𝑇

�

�𝑒𝑒𝑒𝑒𝑒𝑒 � ℏ𝜔𝜔𝑘𝑘𝐵𝐵𝑇𝑇
� − 1�

2 𝑑𝑑𝜔𝜔 = 𝑘𝑘𝐵𝐵 �𝐷𝐷(𝜔𝜔)
𝑒𝑒2𝑒𝑒𝑥𝑥

(𝑒𝑒𝑥𝑥 − 1)2 𝑑𝑑𝜔𝜔 

(3.4.12) 

𝑒𝑒 =
ℏ𝜔𝜔
𝑘𝑘𝐵𝐵𝑇𝑇

 

(3.4.13) 

 

3.4.7 Einstein solid -1 

https://en.wikipedia.org/wiki/Heat_capacity


Einstein solid: the simplest model of heat capacity in which he results of statistical and quantum 
mechanics are considered. 

Assumption: is that all atoms oscillate with the same frequency 

𝜔𝜔 = 𝜔𝜔𝛼𝛼 

Only  

Therefore, Einstein frequency is defined as: 

𝜈𝜈𝛼𝛼 =
𝜔𝜔𝛼𝛼
2𝜋𝜋

 

𝐷𝐷(𝜔𝜔) = 𝐷𝐷(𝜔𝜔𝛼𝛼) = 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑡𝑡𝑐𝑐𝑛𝑛𝑡𝑡 

(3.4.14) 

The average energy of one-dimensional oscillation of an atom: 

〈𝜀𝜀𝐸𝐸𝑠𝑠〉 =
ℏ𝜔𝜔𝛼𝛼

𝑒𝑒𝑒𝑒𝑒𝑒 �ℏ𝜔𝜔𝛼𝛼 𝑘𝑘𝐵𝐵𝑇𝑇� � − 1
 

(3.4.15) 

3.4.8 Einstein solid -2 

The total energy of the crystal consisting of 3-dimensional 𝑁𝑁 atoms: 

𝐸𝐸𝐸𝐸𝑠𝑠 = 3𝑁𝑁〈𝜀𝜀𝐸𝐸𝑠𝑠〉 =
3𝑁𝑁ℏ𝜔𝜔𝛼𝛼

𝑒𝑒𝑒𝑒𝑒𝑒 �ℏ𝜔𝜔𝛼𝛼 𝑘𝑘𝐵𝐵𝑇𝑇� � − 1
 

(3.4.16) 

The heat capacity of the crystal:  

𝐶𝐶𝑉𝑉,𝐸𝐸𝑠𝑠 =
3𝑁𝑁𝑘𝑘𝐵𝐵 �

ℏ𝜔𝜔𝛼𝛼
𝑘𝑘𝐵𝐵𝑇𝑇

�
2
𝑒𝑒𝑒𝑒𝑒𝑒 �ℏ𝜔𝜔𝛼𝛼𝑘𝑘𝐵𝐵𝑇𝑇

�

�𝑒𝑒𝑒𝑒𝑒𝑒 �ℏ𝜔𝜔𝛼𝛼𝑘𝑘𝐵𝐵𝑇𝑇
� − 1�

2  

= 3𝑁𝑁𝑘𝑘𝐵𝐵 �
𝑇𝑇𝛼𝛼
𝑇𝑇
�
2 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑇𝑇𝛼𝛼𝑇𝑇 �

�𝑒𝑒𝑒𝑒𝑒𝑒 �𝑇𝑇𝛼𝛼𝑇𝑇 � − 1�
2 

(3.4.17) 

Resulting in the Einstein temperature: 

𝑇𝑇𝛼𝛼 =
ℏ𝜔𝜔𝛼𝛼
𝑘𝑘𝐵𝐵

 



 

Figure 2. Heat capacity of an Einstein solid as a function of temperature 𝑇𝑇. Experimental value of 3𝑁𝑁𝑘𝑘 is recovered at high 
temperatures. Source: Wikipedia Einstein solid - Wikipedia 

 

3.4.9 High 𝑇𝑇 limits of Einstein heat capacity 

High Temperature Limit: 𝑇𝑇 → ∞.  When temperatures tend to infinity: 

𝑇𝑇𝛼𝛼
𝑇𝑇
→ 0 

𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑇𝑇𝛼𝛼
𝑇𝑇
� → 1 +

𝑇𝑇𝛼𝛼
𝑇𝑇
→ 1 

𝐶𝐶𝑉𝑉,𝐸𝐸𝑠𝑠 =
3𝑁𝑁𝑘𝑘𝐵𝐵 �

𝑇𝑇𝛼𝛼
𝑇𝑇 �

2
𝑒𝑒𝑒𝑒𝑒𝑒 �𝑇𝑇𝛼𝛼𝑇𝑇 �

�𝑒𝑒𝑒𝑒𝑒𝑒 �𝑇𝑇𝛼𝛼𝑇𝑇 � − 1�
2  →

3𝑁𝑁𝑘𝑘𝐵𝐵 �
𝑇𝑇𝛼𝛼
𝑇𝑇 �

2
�1 + 𝑇𝑇𝛼𝛼

𝑇𝑇 �

��1 + 𝑇𝑇𝛼𝛼
𝑇𝑇 � − 1�

2 → 3𝑁𝑁𝑘𝑘𝐵𝐵 

(3.4.18) 

For one mole solid 

𝐶𝐶𝑉𝑉,𝐸𝐸𝑠𝑠 = 3𝑁𝑁𝑘𝑘𝐵𝐵 

(3.4.19) 

Approaches to Dulong-Petit law. Being 3𝑅𝑅: Dulong-Petit limit. 

https://en.wikipedia.org/wiki/Einstein_solid


 

Figure 3. Heat capacity of an Einstein solid as a function of temperature 𝑇𝑇. Experimental value of 3𝑁𝑁𝑘𝑘 is recovered at high 
temperatures. Source: Wikipedia Einstein solid - Wikipedia 

3.4.10 Low 𝑇𝑇 limits of Einstein heat capacity 

Low Temperature Limit: 𝑇𝑇 → 0 

𝑇𝑇𝛼𝛼
𝑇𝑇
→ ∞ 

𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑇𝑇𝛼𝛼
𝑇𝑇
� − 1 → 𝑒𝑒𝑒𝑒𝑒𝑒 �

𝑇𝑇𝛼𝛼
𝑇𝑇
� 

𝐶𝐶𝑉𝑉,𝐸𝐸𝑠𝑠 =
3𝑁𝑁𝑘𝑘𝐵𝐵 �

𝑇𝑇𝛼𝛼
𝑇𝑇 �

2
𝑒𝑒𝑒𝑒𝑒𝑒 �𝑇𝑇𝛼𝛼𝑇𝑇 �

�𝑒𝑒𝑒𝑒𝑒𝑒 �𝑇𝑇𝛼𝛼𝑇𝑇 � − 1�
2  →

3𝑁𝑁𝑘𝑘𝐵𝐵 �
𝑇𝑇𝛼𝛼
𝑇𝑇 �

2

𝑒𝑒𝑒𝑒𝑒𝑒 �𝑇𝑇𝛼𝛼𝑇𝑇 �
→ 0 

𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑇𝑇𝛼𝛼
𝑇𝑇
� ≫ �

𝑇𝑇𝛼𝛼
𝑇𝑇
�
2
 

(3.4.20) 

𝐶𝐶𝑉𝑉,𝐸𝐸𝑠𝑠 rapidly decreases to zero with  𝑇𝑇 → 0 

 

https://en.wikipedia.org/wiki/Einstein_solid


 

Figure 4. Heat capacity of an Einstein solid as a function of temperature 𝑇𝑇. Experimental value of 3𝑁𝑁𝑘𝑘 is recovered at high 
temperatures. At very low temperature it is observed that the results tend to cero, Source: Wikipedia Einstein solid - Wikipedia 

 

3.4.11 Under estimation of low 𝑇𝑇 heat capacity by Einstein model 

Einstein model versus real solids 

Systematic deviation of heat capacity at low 𝑇𝑇 

The lattice vibration with a given a frequency 𝜔𝜔 cannot be excited at low temperature 𝑇𝑇 due to the low 
thermal energy. 

The oscillation of solids: far from single frequency 𝜔𝜔 

Maybe the frequency 𝜔𝜔 vibration excited at low temperature 𝑇𝑇 should be low 

 

https://en.wikipedia.org/wiki/Einstein_solid


 

Figure 5. This plot shows the experimental heat capacity values of lead compared to the expected values calculated from 
Einstein’s heat capacity model. 
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