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3.3 One-dimensional quantum-mechanical harmonic oscillator 
The 1D harmonic oscillator is a system used to solve the Schrödinger equation analytically. 
The Schrödinger equation is a linear partial differential equation that governs the wave function 
of a quantum-mechanical system. A large number of systems behave similar to the harmonic 
oscillator as they approach the limit of small oscillations. These small oscillations are 
particularly relevant to the vibrations of atoms about their equilibrium position in a diatomic 
molecule, the oscillations of atoms, and the oscillators of ions in a crystal lattice.  
 
3.3.1 Schrödinger equation  
The time-independent Schrodinger equation is used to solve several practical problems. The 
equation for one particle with mass m and energy E in one-dimensional space is defined as: 

−ℏ2

2𝑚𝑚
𝑑𝑑2𝜓𝜓
𝑑𝑑𝑥𝑥�2

+ 𝑉𝑉(𝑥𝑥)𝜓𝜓 = 𝐸𝐸𝜓𝜓 (3.3.1.1) 

where ℏ is the reduced Planck constant (1.05457 x 10-34 Js), 𝜓𝜓(𝑥𝑥) is the wavefunction giving the 
probability of finding a particle at the position x, and V(x) is the potential energy that is operated to the 
particle at the position x. The wavefunction contains all the information about the motion of the particle.  
 
3.3.2 1D harmonic oscillation 
In classical mechanics, a harmonic oscillator is a system that, when displaced from its 
equilibrium position, experiences a restoring force F proportional to the displacement x. It is 
defined as:  

𝐹𝐹 = −𝑘𝑘𝑥𝑥 (3.3.2.1) 
where k is the force constant. The force can be related to the potential energy as: 

𝐹𝐹 = −𝑑𝑑𝑉𝑉/𝑑𝑑𝑥𝑥 (3.3.2.2) 
The potential energy stored during the harmonic oscillation is defined as a parabolic function: 

𝑉𝑉 = (1/2)𝑘𝑘𝑥𝑥2 (3.3.2.3) 
Thus, the time-independent Schrödinger equation in 1D can be written as: 

−ℏ2

2𝑚𝑚
𝑑𝑑2𝜓𝜓
𝑑𝑑𝑥𝑥�2

+
1
2
𝑘𝑘𝑥𝑥2𝜓𝜓 = 𝐸𝐸𝜓𝜓 (3.3.2.4) 

 
3.3.3 Solution of the 1D harmonic oscillation 
In classical mechanism, the force applied to a spring is defined as 𝐹𝐹 = −𝑘𝑘𝑥𝑥, and the motion is 
defined as 𝐹𝐹 = 𝑚𝑚 𝑑𝑑2𝑥𝑥

𝑑𝑑𝑡𝑡2 , where t is time. Thus, we can write: 

𝑚𝑚
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

=
1
2
𝑘𝑘𝑥𝑥2 (3.3.3.1) 

The solution to this equation has the form 𝑥𝑥 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔𝑡𝑡 + 𝜃𝜃), with 𝜔𝜔 = �𝑘𝑘/𝑚𝑚. Equation (3.3.2.4) can 
be written in terms of the angular frequency.  

−ℏ2

2𝑚𝑚
𝑑𝑑2𝜓𝜓
𝑑𝑑𝑥𝑥�2

+
1
2
𝑚𝑚𝜔𝜔2𝑥𝑥2𝜓𝜓 = 𝐸𝐸𝜓𝜓 (3.3.3.2) 

Considering that this equation is difficult to solve, we may write:  
−ℏ2

2𝑚𝑚
𝑑𝑑2𝜓𝜓
𝑑𝑑𝑥𝑥�2

= (𝐸𝐸 −
1
2
𝑚𝑚𝜔𝜔2𝑥𝑥2)𝜓𝜓(𝑥𝑥) (3.3.3.3) 

The valuables x and E can be replaced by: 
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𝑥𝑥 = � ℏ
𝑚𝑚𝜔𝜔

𝜉𝜉 (3.3.3.4) 

𝐸𝐸 =
ℏ𝜔𝜔
2
𝜉𝜉 (3.3.3.5) 

Then, the equation become in a simple form: 
𝑑𝑑2𝜙𝜙(𝜉𝜉)
𝑑𝑑𝜉𝜉2

+ (𝜀𝜀 − 𝜉𝜉2)𝜙𝜙(𝜉𝜉) = 0 (3.3.3.6) 

where 𝜙𝜙(𝜉𝜉) =  𝜓𝜓(𝑥𝑥). Still, this equation is difficult to solve. Let’s consider the first term of the 
previous equation. This can be written as:  

𝑑𝑑2

𝑑𝑑𝜉𝜉2
[𝐻𝐻(𝜉𝜉)𝑒𝑒− 𝜉𝜉

2

2 ] =  
𝑑𝑑2

𝑑𝑑𝜉𝜉2
[
𝑑𝑑𝐻𝐻(𝜉𝜉)
𝑑𝑑𝜉𝜉

𝑒𝑒− 𝜉𝜉
2

2  −  𝐻𝐻(𝜉𝜉)
𝑑𝑑
𝑑𝑑𝜉𝜉

𝑒𝑒− 𝜉𝜉
2

2 ]

=  
𝑑𝑑
𝑑𝑑𝜉𝜉

[
𝑑𝑑𝐻𝐻(𝜉𝜉)
𝑑𝑑𝜉𝜉

𝑒𝑒− 𝜉𝜉
2

2  −  𝜉𝜉𝐻𝐻(𝜉𝜉)𝑒𝑒− 𝜉𝜉
2

2 ] = 𝑒𝑒− 𝜉𝜉
2

2 [
𝑑𝑑2𝐻𝐻(𝜉𝜉)
𝑑𝑑𝜉𝜉2

 −  2𝜉𝜉
𝑑𝑑𝐻𝐻(𝜉𝜉)
𝑑𝑑𝜉𝜉

+ (𝜉𝜉2 − 1)𝐻𝐻(𝜉𝜉)] 
(3.3.3.7) 

Simplifying the second term of equation (3.3.3.6) and incorporation (3.3.3.7), we can write:  
  

𝑒𝑒− 𝜉𝜉
2

2 �
𝑑𝑑2𝐻𝐻(𝜉𝜉)
𝑑𝑑𝜉𝜉2

− 2𝜉𝜉
𝑑𝑑𝐻𝐻(𝜉𝜉)
𝑑𝑑𝜉𝜉

+ (𝜉𝜉2 − 1)𝐻𝐻(𝜉𝜉)� + (𝜀𝜀 − 𝜉𝜉2)𝐻𝐻(𝜉𝜉)𝑒𝑒− 𝜉𝜉
2

2 = 0 (3.3.3.8) 

Simplifying one more time gives:  
𝑑𝑑2𝐻𝐻(𝜉𝜉)
𝑑𝑑𝜉𝜉2

 −  2𝜉𝜉
𝑑𝑑𝐻𝐻(𝜉𝜉)
𝑑𝑑𝜉𝜉

+ (𝜀𝜀 − 1)𝐻𝐻(𝜉𝜉) = 0 (3.3.3.9) 

Now, assuming 𝐻𝐻(𝜉𝜉) = ∑ 𝑎𝑎𝑘𝑘∞
𝑘𝑘=0 𝜉𝜉𝑘𝑘 and substituting this into the previous equation gives:  

�𝑘𝑘(𝑘𝑘 − 1)𝑎𝑎𝑘𝑘

∞

𝑘𝑘=2

𝜉𝜉𝑘𝑘−2  −  2𝜉𝜉�𝑘𝑘𝑎𝑎𝑘𝑘

∞

𝑘𝑘=1

𝜉𝜉𝑘𝑘−1 + (𝜀𝜀 − 1)�𝑎𝑎𝑘𝑘

∞

𝑘𝑘=0

𝜉𝜉𝑘𝑘 = 0 

�𝑘𝑘(𝑘𝑘 − 1)𝑎𝑎𝑘𝑘

∞

𝑘𝑘=2

𝜉𝜉𝑘𝑘−2  −  2(0 ∙ 𝑎𝑎0 ∙ 𝜉𝜉0 + �𝑘𝑘𝑎𝑎𝑘𝑘

∞

𝑘𝑘=1

𝜉𝜉𝑘𝑘) + (𝜀𝜀 − 1)�𝑎𝑎𝑘𝑘

∞

𝑘𝑘=0

𝜉𝜉𝑘𝑘 = 0 

�(𝑘𝑘 + 2)(𝑘𝑘 + 1)𝑎𝑎𝑘𝑘+2

∞

𝑘𝑘=0

𝜉𝜉𝑘𝑘  −  2�𝑘𝑘𝑎𝑎𝑘𝑘

∞

𝑘𝑘=0

𝜉𝜉𝑘𝑘 + (𝜀𝜀 − 1)�𝑎𝑎𝑘𝑘

∞

𝑘𝑘=0

𝜉𝜉𝑘𝑘 = 0 

�[(𝑘𝑘 + 2)(𝑘𝑘 + 1)𝑎𝑎𝑘𝑘+2

∞

𝑘𝑘=0

 −  (2𝑘𝑘 − 𝜀𝜀 + 1)𝑎𝑎𝑘𝑘]𝜉𝜉𝑘𝑘 = 0 

(3.3.3.10) 

To satisfy this condition, the interior of the sum must be equal to 0. Thus, we can write: 

𝑎𝑎𝑘𝑘+2 =
(2𝑘𝑘 − 𝜀𝜀 + 1)

(𝑘𝑘 + 2)(𝑘𝑘 + 1)
𝑎𝑎𝑘𝑘 (3.3.3.11) 

Using this to rewrite 𝐻𝐻(𝜉𝜉) we have:  
𝐻𝐻(𝜉𝜉)  

= 𝑎𝑎0(1 −
𝜀𝜀 − 1
1 ∙ 2

𝜉𝜉2 +
𝜀𝜀 − 1
1 ∙ 2

𝜀𝜀 − 4 − 1
3 ∙ 4

𝜉𝜉4−. . . ) + 𝑎𝑎1(𝜉𝜉 −
𝜀𝜀 − 1
2 ∙ 3

𝜉𝜉3

+
𝜀𝜀 − 2 − 1

2 ∙ 3
𝜀𝜀 − 6 − 1

4 ∙ 5
𝜉𝜉5−. . . ) 

(3.3.3.12) 

Without special conditions, the series diverges at large 𝜉𝜉. The conditions for the convergence at 
any 𝜉𝜉 can be described by 𝜀𝜀 = 2𝑛𝑛 − 1. Then, 𝑎𝑎𝑛𝑛 is non-zero while the higher terms are zero. Therefore, 
the series becomes finite. We can write:  
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𝑎𝑎𝑛𝑛+2 =
𝜀𝜀 − 2𝑛𝑛 + 1

(𝑛𝑛 + 2)(𝑛𝑛 + 1)
𝑎𝑎𝑛𝑛 = 0 (3.3.3.13) 

Thus, 𝐻𝐻(𝜉𝜉) is characterized by 𝜀𝜀 = 2𝑛𝑛 − 1 and Hermite polynomials 𝐻𝐻𝑛𝑛(𝜉𝜉). The first few Hermite 
polynomials are described as:  

𝐻𝐻0(𝜉𝜉) = 𝑎𝑎0 
𝐻𝐻1(𝜉𝜉) = 𝑎𝑎1𝜉𝜉 

𝐻𝐻2(𝜉𝜉) = 𝑎𝑎0(1−
4

1 ∙ 2
𝜉𝜉2) 

𝐻𝐻3(𝜉𝜉) = 𝑎𝑎1(1−
4

2 ∙ 3
𝜉𝜉3) 

𝐻𝐻4(𝜉𝜉) = 𝑎𝑎0(1 −
8

1 ∙ 2
𝜉𝜉2 +

8
1 ∙ 2

4
3 ∙ 4

𝜉𝜉4) 

𝐻𝐻5(𝜉𝜉) = 𝑎𝑎1(1−
8

2 ∙ 3
𝜉𝜉3 +

8
2 ∙ 3

4
4 ∙ 5

𝜉𝜉5) 

 

(3.3.3.14) 

The wavefunction under the potential of the harmonic oscillator can now be written as 𝜙𝜙(𝜉𝜉) =

 𝐴𝐴𝐻𝐻(𝜉𝜉)𝑒𝑒− 𝜉𝜉
2

2  and 𝜓𝜓(𝑥𝑥) =  𝐴𝐴𝐻𝐻 ��𝑚𝑚𝑚𝑚
ℏ
𝑥𝑥� 𝑒𝑒− 𝑚𝑚𝑚𝑚

2ℏ 𝑥𝑥
2
. The allowed energies are 𝐸𝐸 = ℏ𝑚𝑚

2
(2𝑛𝑛 + 1) = ℏ𝜔𝜔(𝑛𝑛 +

1
2
). 

 
3.3.4 Energy level  
The permitted energy levels can be written as:  

𝐸𝐸 =
ℏ𝜔𝜔
2
𝜀𝜀𝑣𝑣 =

ℏ𝜔𝜔
2

(𝑣𝑣 +
1
2

) (3.3.3.15) 

where v=0,2, …, or any quantum number. The angular frequency increases with increasing k 
and decreasing m, such that at v=0, 𝐸𝐸0 = ℏ𝑚𝑚

2
. This is also referred to as the non-zero, zero-point 

energy. The separation between the adjacent levels can be written as 𝐸𝐸𝑣𝑣_+1 − 𝐸𝐸𝑣𝑣 =  ℏ𝜔𝜔, which 
is identical for all v. The energy levels ℏ𝜔𝜔 form a uniform ladder of spacing, see Fig. 1.  
 

 
Fig.1. Diagram of a potential well illustrating the allowed energy levels as a function of displacement.  
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3.3.5 Time dependent Schrödinger equation of the harmonic oscillator 
The time dependent Schrödinger equation of the harmonic oscillator requires further analysis 
of the particle’s oscillation. The particle’s oscillation can be investigated via the ladder operator 
𝑎𝑎� and its adjoint 𝑎𝑎�+.  

𝑎𝑎� = �
𝑚𝑚𝜔𝜔
2ℏ

(𝑥𝑥� +
𝑖𝑖
𝑚𝑚𝜔𝜔

�̂�𝑝) (3.3.5.1) 

𝑎𝑎�+ = �
𝑚𝑚𝜔𝜔
2ℏ

(𝑥𝑥�  −  
𝑖𝑖
𝑚𝑚𝜔𝜔

�̂�𝑝) (3.3.5.2) 

where 𝑥𝑥� is the particle’s displacement and �̂�𝑝 is the momentum. This notation becomes particularly 
useful when investigating the time (t) dependent solution. The solution is a simple 
superposition of the lowest two eigenstates (n=0 and 1), such that:  

|𝜓𝜓⟩ =  𝐴𝐴𝐴𝐴𝐴𝐴𝜃𝜃|0⟩ +  𝑒𝑒𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑛𝑛𝜃𝜃|1� (3.3.5.3) 
where 𝜑𝜑 is the phase lag of the oscillation and 𝜃𝜃  is the angle of the oscillation. The time 
evolution is thus given by:  

|𝜓𝜓, 𝑡𝑡⟩ =  𝑒𝑒−
𝑖𝑖𝑖𝑖
ℏ 𝑡𝑡|𝜓𝜓⟩ =  𝑒𝑒−

𝑖𝑖𝑖𝑖
ℏ 𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝜃𝜃|0⟩ + 𝑒𝑒−

𝑖𝑖𝑖𝑖
ℏ 𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑛𝑛𝜃𝜃|1⟩ (3.3.5.4) 

In terms of energy, E0 and E1, we can write:  

|𝜓𝜓, 𝑡𝑡⟩ = 𝑒𝑒− 𝑖𝑖𝐸𝐸0ℏ 𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝜃𝜃 �0⟩ + 𝑒𝑒− 𝑖𝑖𝐸𝐸1ℏ 𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑛𝑛𝜃𝜃�1⟩ 

= 𝑒𝑒− 𝑖𝑖𝑚𝑚2 𝑡𝑡(𝐴𝐴𝐴𝐴𝐴𝐴𝜃𝜃|0⟩ + 𝑒𝑒𝑚𝑚𝑖𝑖𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑛𝑛𝜃𝜃|1⟩) 
(3.3.5.5) 

We can now write this solution in terms of ladder operators using 𝑥𝑥� = � ℏ
2𝑚𝑚𝑚𝑚

(𝑎𝑎�  + 𝑎𝑎�+): 

⟨𝜓𝜓, 𝑡𝑡|𝑥𝑥�|𝜓𝜓, 𝑡𝑡⟩ 

= 𝑒𝑒− 𝑖𝑖𝑚𝑚2 𝑡𝑡�𝐴𝐴𝐴𝐴𝐴𝐴𝜃𝜃�0⟩ + 𝑒𝑒𝑚𝑚𝑖𝑖𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑛𝑛𝜃𝜃�1⟩�𝑥𝑥�𝑒𝑒
𝑖𝑖𝑚𝑚
2 𝑡𝑡�𝐴𝐴𝐴𝐴𝐴𝐴𝜃𝜃�0⟩ + 𝑒𝑒𝑚𝑚𝑖𝑖𝑡𝑡𝑒𝑒−𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑛𝑛𝜃𝜃�1⟩� 

= 𝑒𝑒− 𝑖𝑖𝑚𝑚2 𝑡𝑡(𝐴𝐴𝐴𝐴𝐴𝐴𝜃𝜃|0⟩ +  𝑒𝑒𝑚𝑚𝑖𝑖𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑛𝑛𝜃𝜃|1⟩) �
ℏ

2𝑚𝑚𝜔𝜔
(𝑎𝑎�  + 𝑎𝑎�+) 𝑒𝑒

𝑖𝑖𝑚𝑚
2 𝑡𝑡(𝐴𝐴𝐴𝐴𝐴𝐴𝜃𝜃|0⟩

+  𝑒𝑒𝑚𝑚𝑖𝑖𝑡𝑡𝑒𝑒−𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑛𝑛𝜃𝜃|1⟩) 

(3.3.5.6) 

This can be simplified to using ⟨𝑎𝑎�|0⟩ = |0⟩, ⟨𝑎𝑎�|1⟩ = |0⟩, �𝑎𝑎�+� |0⟩ = |1⟩ 𝑎𝑎𝑛𝑛𝑑𝑑 �𝑎𝑎�+� |0⟩ = √2|2⟩: 
⟨𝜓𝜓, 𝑡𝑡|𝑥𝑥�|𝜓𝜓, 𝑡𝑡⟩ 

= �𝐴𝐴𝐴𝐴𝐴𝐴𝜃𝜃�0⟩ + 𝑒𝑒𝑚𝑚𝑖𝑖𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑛𝑛𝜃𝜃�1⟩��
ℏ

2𝑚𝑚𝜔𝜔
(𝑎𝑎� + 𝑎𝑎�+)�𝐴𝐴𝐴𝐴𝐴𝐴𝜃𝜃�0⟩ + 𝑒𝑒𝑚𝑚𝑖𝑖𝑡𝑡𝑒𝑒−𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑛𝑛𝜃𝜃�1⟩� 

= � ℏ
2𝑚𝑚𝜔𝜔

(𝐴𝐴𝐴𝐴𝐴𝐴𝜃𝜃|0⟩ +  𝑒𝑒𝑚𝑚𝑖𝑖𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑛𝑛𝜃𝜃|1⟩)(𝐴𝐴𝐴𝐴𝐴𝐴𝜃𝜃|1⟩ +  𝑒𝑒𝑚𝑚𝑖𝑖𝑡𝑡𝑒𝑒−𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑛𝑛𝜃𝜃(|0⟩

+ √2|2⟩)) 

(3.3.5.7) 

Finally, when processing the multiplication among the similar energy states, this results in: 

⟨𝜓𝜓, 𝑡𝑡|𝑥𝑥�|𝜓𝜓, 𝑡𝑡⟩ = � ℏ
2𝑚𝑚𝜔𝜔

�𝑒𝑒𝑚𝑚𝑖𝑖𝑡𝑡𝑒𝑒−𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝜃𝜃𝐴𝐴𝑖𝑖𝑛𝑛𝜃𝜃 + 𝑒𝑒𝑚𝑚𝑖𝑖𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑛𝑛𝜃𝜃𝐴𝐴𝐴𝐴𝐴𝐴𝜃𝜃� 

= � ℏ
2𝑚𝑚𝜔𝜔

(𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔𝑡𝑡 − 𝜑𝜑)𝐴𝐴𝑖𝑖𝑛𝑛2𝜃𝜃) 

 

(3.3.5.8) 



5 
 

In other words, the position oscillates between ±� ℏ
2𝑚𝑚𝑚𝑚

𝐴𝐴𝑖𝑖𝑛𝑛2𝜃𝜃 at a frequency 𝜔𝜔.  

 
3.3.6 Phonons  
The harmonic oscillator is used to describe vibrations in a crystal lattice, such as phonons, 
using quantum-mechanics. The quantum-mechanical description is used to derive the lattice 
properties, such as the specific heat, of the system. Let’s consider a system defined as a 
monoatomic crystal formed by ions in a lattice. The equilibrium position of the ions can be 
described as 𝑅𝑅𝑛𝑛 = 𝑛𝑛𝑑𝑑, where d is the lattice constant. Considering a significant displacement 
𝑥𝑥𝑛𝑛from the equilibrium position, the actual position of the ions would be 𝑟𝑟𝑛𝑛 = 𝑥𝑥𝑛𝑛 + 𝑅𝑅𝑛𝑛. The 
interaction potential among the ions can be written as:  

𝑉𝑉 =
1
2
�𝑉𝑉(𝑟𝑟𝑛𝑛 − 𝑟𝑟𝑚𝑚)
𝑛𝑛,𝑚𝑚

=
1
2
�𝑉𝑉(𝑅𝑅𝑛𝑛 − 𝑅𝑅𝑚𝑚 + 𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑚𝑚)
𝑛𝑛,𝑚𝑚

 (3.3.6.1) 

In the case of a negligible displacement, the potential can be expanded as:  
𝑉𝑉

=
1
2
�𝑉𝑉(𝑅𝑅𝑛𝑛 − 𝑅𝑅𝑚𝑚)
𝑛𝑛,𝑚𝑚

+
1
2
�(𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑚𝑚)𝜕𝜕𝑉𝑉(𝑅𝑅𝑛𝑛 − 𝑅𝑅𝑚𝑚)
𝑛𝑛,𝑚𝑚

+
1
2
�(𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑚𝑚)2𝜕𝜕2𝑉𝑉(𝑅𝑅𝑛𝑛 − 𝑅𝑅𝑚𝑚)
𝑛𝑛,𝑚𝑚

 

(3.3.6.2) 

The first term represents the interaction potential at equilibrium, which is not significant in this 
case. Extending the second term gives:  

1
2
�(𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑚𝑚)𝜕𝜕𝑉𝑉(𝑅𝑅𝑛𝑛 − 𝑅𝑅𝑚𝑚)
𝑛𝑛,𝑚𝑚

=
1
2
�𝑥𝑥𝑛𝑛
𝑛𝑛

�𝜕𝜕𝑉𝑉(𝑅𝑅𝑛𝑛 − 𝑅𝑅𝑚𝑚) − 𝜕𝜕𝑉𝑉(𝑅𝑅𝑚𝑚 − 𝑅𝑅𝑛𝑛)
𝑚𝑚

 

= �𝑥𝑥𝑛𝑛
𝑛𝑛

�𝜕𝜕𝑉𝑉(𝑅𝑅𝑛𝑛 − 𝑅𝑅𝑚𝑚)
𝑚𝑚

 
(3.3.6.3) 

The last sum is the total force 𝐹𝐹𝑛𝑛 exerted on the atom n by all the other atoms. At equilibrium, 
this force is null and thus the second term of (3.3.6.1) can also be ignored. Assuming only 
neighboring atoms interact with each other, extending the third term of (3.3.6.1) gives:  

1
2
�(𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑚𝑚)2𝜕𝜕2𝑉𝑉(𝑅𝑅𝑛𝑛 − 𝑅𝑅𝑚𝑚)
𝑛𝑛,𝑚𝑚

=
1
2
𝐾𝐾�(𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛+1)2
𝑛𝑛,𝑚𝑚

 (3.3.6.4) 

The potential energy of the lattice can now be written as:  

𝑉𝑉 =
1
2
𝐾𝐾�(𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛+1)2
𝑛𝑛,𝑚𝑚

 

= −  
𝐾𝐾

2𝑁𝑁𝑁𝑁
�

4𝐴𝐴𝑖𝑖𝑛𝑛2(𝑘𝑘𝑑𝑑/2)
2𝜔𝜔𝑘𝑘𝑘𝑘

[− 𝑎𝑎𝑘𝑘+𝑎𝑎−𝑘𝑘+   −   𝑎𝑎𝑘𝑘+𝑎𝑎𝑘𝑘   −   𝑎𝑎𝑘𝑘𝑎𝑎−𝑘𝑘   −    𝑎𝑎𝑘𝑘𝑎𝑎𝑘𝑘+] 
(3.3.6.5) 

The Hamiltonian can be written as:  

𝐻𝐻 = �
𝑝𝑝𝑛𝑛2

2𝑁𝑁
𝑛𝑛

+
1
2
𝐾𝐾�(𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛+1)2
𝑛𝑛,𝑚𝑚

 (3.3.6.6) 

where M is the mass of the ions. After some algebra, this can be simplified to: 

𝐻𝐻 = �𝜔𝜔𝑘𝑘
𝑘𝑘

[ 𝑎𝑎𝑘𝑘+𝑎𝑎𝑘𝑘  +  
1
2

] (3.3.6.7) 
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We can now define 𝑛𝑛𝑘𝑘  =  𝑎𝑎𝑘𝑘+𝑎𝑎𝑘𝑘, which describes the excitation number of a normal mode of 
the ion vibration. Quasi-particles, such as phonons, can also be described by 𝑛𝑛𝑘𝑘.  
The heat capacity describes how much heat is required to raise the temperature of a given 
system. The specific heat capacity is a measure particular to a material and only depends on 
the type and phase of that material. This is described in terms of heat capacity per unit mass 
and is defined by 𝐶𝐶𝑣𝑣 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
, where T is temperature. The thermal energy density (u) requires the 

investigation of the lattice vibration, which is governed by the partition function. The resulting 
thermal energy density in terms of volume (V) is:  

𝑢𝑢 =
1
𝑉𝑉
�𝜔𝜔𝑘𝑘[𝑛𝑛(𝑘𝑘) +  

1
2

]
𝑘𝑘

 (3.3.6.8) 

Taking the derivative gives:  

𝐶𝐶𝑣𝑣 = �
𝜔𝜔𝑘𝑘

2

4𝑉𝑉𝑘𝑘𝑏𝑏𝑇𝑇2𝐴𝐴𝑖𝑖𝑛𝑛ℎ2( 𝜔𝜔𝑘𝑘
2𝑘𝑘𝑏𝑏𝑇𝑇

)𝑘𝑘

 (3.3.6.9) 
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