
3. Lattice Vibration 
3.2. Energy Equipartition Law and Dulong-Petit Law  
3.2.1 Equipartition of Energy 
The equipartition of energy relates the temperature of a system to its average energies. The law of 
equipartition (law of statistical mechanics) explain that when one system is in thermal equilibrium, on the 
average, an equal amount of energy will be associated with each degree of freedom, in other words, the 
energy will be proportional to the number of dimensions necessary to describe the position of a particle 
that moves in space. This law is based on the work of James Clerk Maxwell and Ludwing Boltzmann, and 
states that a system of particles at absolute temperature will have an average energy of  1

2
 𝑘𝑘𝐵𝐵𝑇𝑇 associated 

with each degree of freedom, in which 𝑘𝑘𝐵𝐵is the Boltzmann constant.  This explain how the equipartition 
theorem is able to makes quantitative predictions regarding the heat capacity, it gives the total average 
kinetic and potential energies for a system at a given temperature, from which the system's heat capacity 
can be computed. 

3.2.2 Dulong-Petit law 
The Dulong–Petit law is a thermodynamic law which represent the classical expression for the molar 
specific heat of certain crystals. The Dulong-Petit Law is based on the result of experiments on three 
dimensional solid crystals to determine the heat capacities of a variety of these solids. The results proved 
that all investigated solids had a heat capacity of approximately 3R (25 𝐽𝐽 𝐾𝐾−1𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−1) at room 
temperature.  The equipartition theory provides a simple explanation for the Dulong-Petit law: an atom 
in a solid is considered to be a localized harmonic oscillator, with three modes of vibration. There are two 
degrees of freedom associated with each mode of vibration, or a total of six degrees of freedom, thus the 
simplified form to describe the specific heat 𝐶𝐶𝑣𝑣 = 1

2
𝑅𝑅𝑅𝑅 , in which D is the degrees of freedom, gives for a 

monoatomic solid:  

𝐶𝐶𝑣𝑣 =
1
2
𝑅𝑅𝑅𝑅 =  

1
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𝑅𝑅(6) = 24,987 
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     (𝟑𝟑.𝟐𝟐.𝟏𝟏) 

 

Figure 3.2.1. Correlated data from nine different substances onto a single curve, with the aid of a 
dimensionless temperature, T/θ. Source: Chang (1979). 

X103

https://en.wikipedia.org/wiki/Thermal_equilibrium
https://en.wikipedia.org/wiki/Degrees_of_freedom
https://simple.wikipedia.org/wiki/Absolute_temperature#:%7E:text=Absolute%20temperature%2C%20also%20called%20thermodynamic,lowest%20possible%20(minimum)%20energy.
https://en.wikipedia.org/wiki/Boltzmann_constant
https://en.wikipedia.org/wiki/Heat_capacity
https://en.wikipedia.org/wiki/Heat_capacity
https://en.wikipedia.org/wiki/Dulong%E2%80%93Petit_law#:%7E:text=The%20Dulong%E2%80%93Petit%20law%2C%20a,capacity%20of%20certain%20chemical%20elements.
https://en.wikipedia.org/wiki/Equipartition_theorem
https://en.wikipedia.org/wiki/Molecular_vibration
https://simple.wikipedia.org/wiki/Specific_heat#:%7E:text=Specific%20heat%20is%20the%20thermodynamic,to%20which%20they%20absorb%20heat.


2.3 Derivation of Dulong-Petit law 
The atoms in solid are oscillating and being bound by atomic bounding, the energy is given by the kinetic 
and potential energy. The kinetic energy of the atom i-th in the direction j-th is expressed by 𝜀𝜀𝐾𝐾,𝑖𝑖𝑖𝑖 =

 
𝑝𝑝𝑖𝑖𝑖𝑖2

2𝑔𝑔𝑖𝑖
�  , and the potential energy by 𝜀𝜀𝑃𝑃,𝑖𝑖𝑖𝑖 = 1
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𝑘𝑘𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑖𝑖2 , in which 𝑝𝑝𝑖𝑖𝑖𝑖2  represent the linear momentum of the 

i-th atom in the j-th direction, 𝑔𝑔𝑖𝑖 is the mass of the i-th atom, 𝑞𝑞𝑖𝑖𝑖𝑖2  is the deviation of the i-th atom from its 
equilibrium position in the j-th direction and 𝑘𝑘𝑖𝑖𝑖𝑖is the spring constant for the potential energy in the j-th 
direction.  Hence, the total energy of the crystal 𝐸𝐸𝑇𝑇 is equal to the sum of the kinetic energy in the 3 
directions and the potential energy in the 3 directions of all atoms, as is expressed in the equation (3.2.2). 
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The average kinetic energy of one atom in one direction can be obtained using the Boltzmann distribution.  
This explain the average kinetic energy of one atom, is given by the rate of the multiple integrals of the 
kinetic energy multiplied by the factor   𝑒𝑒𝑥𝑥𝑝𝑝[−𝐸𝐸𝑇𝑇 𝑘𝑘𝐵𝐵𝑇𝑇⁄ ] with regards to the multiple integrals of the factor   
𝑒𝑒𝑥𝑥𝑝𝑝[−𝐸𝐸𝑇𝑇 𝑘𝑘𝐵𝐵𝑇𝑇⁄ ], the simplified description of the average kinetic energy is given by the equation (3.2.4). 
A similar deduction can be used for the potential energy of one atom in one direction, obtaining a similar 
value as is shown by the equation (3.2.5) 

〈𝜀𝜀𝐾𝐾,𝑛𝑛〉 =
∫ …∞
−∞ ∫ 𝜀𝜀𝐾𝐾,𝑛𝑛

∞
−∞  𝑒𝑒𝑥𝑥𝑝𝑝[−𝐸𝐸𝑇𝑇 𝑘𝑘𝐵𝐵𝑇𝑇⁄ ]𝑎𝑎𝑝𝑝1𝑎𝑎𝑞𝑞1 … .𝑎𝑎𝑝𝑝3𝑁𝑁𝑎𝑎𝑞𝑞3𝑁𝑁

∫ …∞
−∞ ∫  𝑒𝑒𝑥𝑥𝑝𝑝[−𝐸𝐸𝑇𝑇 𝑘𝑘𝐵𝐵𝑇𝑇⁄ ]𝑎𝑎𝑝𝑝1𝑎𝑎𝑞𝑞1 … .𝑎𝑎𝑝𝑝3𝑁𝑁𝑎𝑎𝑞𝑞3𝑁𝑁

∞
−∞

 

 

              =
∫ …∞
−∞ ∫ 𝑝𝑝𝑛𝑛2

2𝑔𝑔𝑛𝑛

∞
−∞  𝑒𝑒𝑥𝑥𝑝𝑝 �−∑ ( 𝑝𝑝𝑙𝑙

2

2𝑔𝑔𝑙𝑙
+ 1

2𝑘𝑘𝑙𝑙𝑞𝑞𝑙𝑙
2)3𝑁𝑁

𝑙𝑙=1 𝑘𝑘𝐵𝐵𝑇𝑇� �𝑎𝑎𝑝𝑝1𝑎𝑎𝑞𝑞1 … .𝑎𝑎𝑝𝑝3𝑁𝑁𝑎𝑎𝑞𝑞3𝑁𝑁

∫ …∞
−∞ ∫  𝑒𝑒𝑥𝑥𝑝𝑝 �−∑ ( 𝑝𝑝𝑙𝑙

2

2𝑔𝑔𝑙𝑙
+ 1

2𝑘𝑘𝑙𝑙𝑞𝑞𝑙𝑙
2)3𝑁𝑁

𝑙𝑙=1 𝑘𝑘𝐵𝐵𝑇𝑇� � 𝑎𝑎𝑝𝑝1𝑎𝑎𝑞𝑞1 … .𝑎𝑎𝑝𝑝3𝑁𝑁𝑎𝑎𝑞𝑞3𝑁𝑁
∞
−∞

 

              =

∫ 𝑝𝑝𝑛𝑛2

2𝑚𝑚𝑛𝑛
∞
−∞  𝑒𝑒𝑒𝑒𝑒𝑒�−

𝑝𝑝𝑛𝑛2
2𝑚𝑚𝑛𝑛
�

𝑘𝑘𝐵𝐵𝑇𝑇
�𝑑𝑑𝑒𝑒𝑛𝑛∏ ∫ 𝑒𝑒𝑒𝑒𝑒𝑒�−

𝑝𝑝𝑙𝑙
2
2𝑚𝑚𝑙𝑙
�

𝑘𝑘𝐵𝐵𝑇𝑇
�𝑑𝑑𝑒𝑒𝑙𝑙

∞
−∞

3𝑁𝑁
𝑙𝑙=1,𝑙𝑙≠𝑛𝑛 ∏ ∫ 𝑒𝑒𝑒𝑒𝑒𝑒�−

1
2𝑘𝑘𝑙𝑙𝑞𝑞𝑙𝑙

2

𝑘𝑘𝐵𝐵𝑇𝑇
�𝑑𝑑𝑑𝑑𝑙𝑙

∞
−∞

3𝑁𝑁
𝑙𝑙=1,

∫ 𝑒𝑒𝑒𝑒𝑒𝑒�−
𝑝𝑝𝑛𝑛
2
2𝑚𝑚𝑛𝑛
�

𝑘𝑘𝐵𝐵𝑇𝑇
�∞

−∞  𝑑𝑑𝑒𝑒𝑛𝑛∏ ∫ 𝑒𝑒𝑒𝑒𝑒𝑒�−
𝑝𝑝𝑙𝑙
2
2𝑚𝑚𝑙𝑙
�

𝑘𝑘𝐵𝐵𝑇𝑇
�𝑑𝑑𝑒𝑒𝑙𝑙

∞
−∞

3𝑁𝑁
𝑙𝑙=1,𝑙𝑙≠𝑛𝑛 ∏ ∫ 𝑒𝑒𝑒𝑒𝑒𝑒�−

1
2𝑘𝑘𝑙𝑙𝑞𝑞𝑙𝑙

2

𝑘𝑘𝐵𝐵𝑇𝑇
�𝑑𝑑𝑑𝑑𝑙𝑙

∞
−∞

3𝑁𝑁
𝑙𝑙=1,

 

               =

1
2𝑔𝑔𝑛𝑛

 ∫ 𝑝𝑝𝑛𝑛2
∞
−∞ 𝑒𝑒𝑥𝑥𝑝𝑝 �− 1

2𝑔𝑔𝑛𝑛𝑘𝑘𝐵𝐵𝑇𝑇
𝑝𝑝𝑛𝑛2� 𝑎𝑎𝑝𝑝𝑛𝑛

∫ 𝑝𝑝𝑛𝑛2
∞
−∞ 𝑒𝑒𝑥𝑥𝑝𝑝 �− 1

2𝑔𝑔𝑛𝑛𝑘𝑘𝐵𝐵𝑇𝑇
𝑝𝑝𝑛𝑛2� 𝑎𝑎𝑝𝑝𝑛𝑛

                  (𝟑𝟑.𝟐𝟐.𝟑𝟑) 

https://en.wikipedia.org/wiki/Kinetic_energy
https://en.wikipedia.org/wiki/Potential_energy
https://en.wikipedia.org/wiki/Momentum
https://en.wikipedia.org/wiki/Boltzmann_distribution


 

〈𝜀𝜀𝐾𝐾,𝑛𝑛〉 =

1
2𝑔𝑔𝑛𝑛

 ∫ 𝑝𝑝𝑛𝑛2
∞
−∞ 𝑒𝑒𝑥𝑥𝑝𝑝 �− 1

2𝑔𝑔𝑛𝑛𝑘𝑘𝐵𝐵𝑇𝑇
𝑝𝑝𝑛𝑛2� 𝑎𝑎𝑝𝑝𝑛𝑛

∫ 𝑝𝑝𝑛𝑛2
∞
−∞ 𝑒𝑒𝑥𝑥𝑝𝑝 �− 1

2𝑔𝑔𝑛𝑛𝑘𝑘𝐵𝐵𝑇𝑇
𝑝𝑝𝑛𝑛2� 𝑎𝑎𝑝𝑝𝑛𝑛

=

1
2𝑔𝑔𝑛𝑛

 �𝜋𝜋 � 1
2𝑔𝑔𝑛𝑛𝑘𝑘𝐵𝐵𝑇𝑇

�
3

�
1/2

�𝜋𝜋 2𝑔𝑔𝑛𝑛𝑘𝑘𝐵𝐵𝑇𝑇⁄
=

1
2
𝑘𝑘𝐵𝐵𝑇𝑇 (𝟑𝟑.𝟐𝟐.𝟒𝟒) 

𝑥𝑥 = 𝑝𝑝𝑛𝑛,𝑎𝑎 =
1

2𝑔𝑔𝑛𝑛𝑘𝑘𝐵𝐵𝑇𝑇
,� exp(𝑎𝑎𝑥𝑥2)𝑎𝑎𝑥𝑥 = �𝜋𝜋 𝑎𝑎⁄

∞

−∞
,� 𝑥𝑥2

∞

−∞
exp(−𝑎𝑎𝑥𝑥2)𝑎𝑎𝑥𝑥 =

1
2�

𝜋𝜋
𝑎𝑎3�  

 

〈𝜀𝜀𝑃𝑃,𝑛𝑛〉 =
∫ …∞
−∞ ∫ 𝜀𝜀𝑃𝑃,𝑛𝑛

∞
−∞  𝑒𝑒𝑥𝑥𝑝𝑝[−𝐸𝐸𝑇𝑇 𝑘𝑘𝐵𝐵𝑇𝑇⁄ ]𝑎𝑎𝑝𝑝1𝑎𝑎𝑞𝑞1 … .𝑎𝑎𝑝𝑝3𝑁𝑁𝑎𝑎𝑞𝑞3𝑁𝑁

∫ …∞
−∞ ∫  𝑒𝑒𝑥𝑥𝑝𝑝[−𝐸𝐸𝑇𝑇 𝑘𝑘𝐵𝐵𝑇𝑇⁄ ]𝑎𝑎𝑝𝑝1𝑎𝑎𝑞𝑞1 … . 𝑎𝑎𝑝𝑝3𝑁𝑁𝑎𝑎𝑞𝑞3𝑁𝑁

∞
−∞

 

 

=

∫ 𝑞𝑞𝑛𝑛2𝑘𝑘𝑛𝑛
2

∞
−∞  𝑒𝑒𝑥𝑥𝑝𝑝 �−

𝑞𝑞𝑛𝑛2𝑘𝑘𝑛𝑛
2
𝑘𝑘𝐵𝐵𝑇𝑇

�𝑎𝑎𝑝𝑝𝑛𝑛 ∏ ∫ 𝑒𝑒𝑥𝑥𝑝𝑝 �−
𝑞𝑞𝑙𝑙2𝑘𝑘𝑙𝑙

2
𝑘𝑘𝐵𝐵𝑇𝑇

�𝑎𝑎𝑝𝑝𝑙𝑙
∞
−∞

3𝑁𝑁
𝑙𝑙=1,𝑙𝑙≠𝑛𝑛 ∏ ∫ 𝑒𝑒𝑥𝑥𝑝𝑝 �−

𝑝𝑝𝑛𝑛2
2𝑔𝑔𝑛𝑛
�
𝑘𝑘𝐵𝐵𝑇𝑇

�𝑎𝑎𝑞𝑞𝑙𝑙
∞
−∞

3𝑁𝑁
𝑙𝑙=1,

∫ 𝑒𝑒𝑥𝑥𝑝𝑝 �−
𝑞𝑞𝑛𝑛2𝑘𝑘𝑛𝑛

2
𝑘𝑘𝐵𝐵𝑇𝑇

�𝑎𝑎𝑝𝑝𝑛𝑛 ∏ ∫ 𝑒𝑒𝑥𝑥𝑝𝑝 �−
𝑞𝑞𝑙𝑙2𝑘𝑘𝑙𝑙

2
𝑘𝑘𝐵𝐵𝑇𝑇

�𝑎𝑎𝑝𝑝𝑙𝑙
∞
−∞

3𝑁𝑁
𝑙𝑙=1,𝑙𝑙≠𝑛𝑛 ∏ ∫ 𝑒𝑒𝑥𝑥𝑝𝑝 �−

𝑝𝑝𝑛𝑛2
2𝑔𝑔𝑛𝑛
�
𝑘𝑘𝐵𝐵𝑇𝑇

�𝑎𝑎𝑞𝑞𝑙𝑙
∞
−∞

3𝑁𝑁
𝑙𝑙=1,

∞
−∞  

 

〈𝜀𝜀𝑃𝑃,𝑛𝑛〉 =

𝑘𝑘𝑛𝑛
2  ∫ 𝑞𝑞𝑛𝑛2

∞
−∞ 𝑒𝑒𝑥𝑥𝑝𝑝 �− 𝑘𝑘𝑛𝑛

2𝑘𝑘𝐵𝐵𝑇𝑇
𝑞𝑞𝑛𝑛2� 𝑎𝑎𝑝𝑝𝑛𝑛

∫ 𝑒𝑒𝑥𝑥𝑝𝑝 �− 𝑘𝑘𝑛𝑛
2𝑘𝑘𝐵𝐵𝑇𝑇

𝑞𝑞𝑛𝑛2� 𝑎𝑎𝑝𝑝𝑛𝑛
∞
−∞

=

𝑘𝑘𝑛𝑛
2  �𝜋𝜋 � 𝑘𝑘𝑛𝑛

2𝑘𝑘𝐵𝐵𝑇𝑇
�
3

�
1/2

�𝜋𝜋 � 𝑘𝑘𝑛𝑛
2𝑘𝑘𝐵𝐵𝑇𝑇

��
=

1
2
𝑘𝑘𝐵𝐵𝑇𝑇    (3.2.5) 

𝑥𝑥 = 𝑞𝑞𝑛𝑛,𝑎𝑎 =
𝑘𝑘𝑛𝑛

2𝑘𝑘𝐵𝐵𝑇𝑇
 

Thus, from the present deduction, for one freedom of both kinetic and potential energy has an average 
energy value of   1

2
𝑘𝑘𝐵𝐵𝑇𝑇, as it was explained in 3.2.1. Since one atom has 6 energy freedoms, 3 for kinetic 

and 3 for potential energy, the total energy of one atom tends to be 3𝑘𝑘𝐵𝐵𝑇𝑇, and 3RT per one mole of solid 
at T.   

 

2.4 Limitation of Dulong-Petit law 
The accuracy of Petit and Dulong law decrease at low temperatures and also fails to explain why certain 
substances deviate very strongly from these laws. The figure 3.2.1, shows how the specific heat of the 
variety of solids, when they are plotted against temperature, tend to limit the Specific heat as the 
temperature is increased. As the temperature goes up, the specific heat goes up until it approaches the 
Dulong and Petit prediction at high temperature. Nonetheless the explanation for Petit and Dulong's 
experiment was not sufficient when it was discovered that heat capacity decreased and going to zero as 
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a function of T3 (or, for metals, T) as temperature approached absolute zero. Some applications and Cv 
values for certain materials are given in table 3.2.1.  

 

Table 3.2.1. Application of Laws of DuLong and Petit 

Molar Cv for Monoatomic Solids Molar Cv for Diatomic and Triatomic Solids 
Substance T, °C Cv, , KJ/ gmole °C Substance T, °C Cv, /2  or 3, KJ/ gmole °C 

Ag 0 25.1 AgCl 28 26.2 
Au 0 25.4 CuO 22 21.8 
Cr 0 22.4 KCl 23 25.9 
Fe 0 24.5 CuS 25 24.9 
Ni 0 25.3 PbO2 24 21.6 
Sb 0 25.1 CaF2 15-99 23.5 

Graphite 0 7.6 ZnO 16—99 21.3 
Diamond 0 5.2 PbCl2 0-20 25.4 
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