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2. Elasticity 
6. Frequently used elastic constants 
6.1 Bulk modulus 

Bulk modulus (K) is increase in hydrostatic pressure (∆P) by volume (V) decrease. It is defined as 
the amount of pressure increase with respect to the ratio of the volume decrease: 

𝐾𝐾 ≡
∆𝑃𝑃

(−∆𝑉𝑉 𝑉𝑉⁄ ) (2.6.1) 

where K is the bulk modulus, P is the hydrostatic pressure and V is the volume. Bulk modulus has 
already been defined in the chapter 1. Different from that chapter, it is defined again using the Lame’s 
constants (λ, μ) in this section. The outline for obtaining the definition is as follows: first, we express 
hydrostatic pressure and volume by the Lame’s constants, and then, we get bulk modulus by 
combining them. 

Since bulk modulus is defined for an isotropic stress field, no shear strain but only normal strains 
with the same magnitude are produced. The strains are therefore expressed as: 

𝜀𝜀1 = 𝜀𝜀2 = 𝜀𝜀3 (2.6.2) 

𝜀𝜀4 = 𝜀𝜀5 = 𝜀𝜀6 = 0 (2.6.3) 

where ε1, ε2, ε3 are normal strains and ε4, ε5, ε6 are shear strains according to the Voigt notation. By 
substituting these values of the strains into the generalized Hooke’s law for isotropic solids (the 
formula (2.5.31)),  

⎣
⎢
⎢
⎢
⎢
⎡
𝜎𝜎1
𝜎𝜎2
𝜎𝜎3
0
0
0 ⎦
⎥
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⎥
⎥
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=

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝜆𝜆 + 2𝜇𝜇 𝜆𝜆 𝜆𝜆

𝜆𝜆 𝜆𝜆 + 2𝜇𝜇 𝜆𝜆 0
𝜆𝜆 𝜆𝜆 𝜆𝜆 + 2𝜇𝜇

𝜇𝜇 0 0
0 0 𝜇𝜇 0
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⎥
⎥
⎥
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⎢
⎢
⎢
⎢
⎡
𝜀𝜀1
𝜀𝜀1
𝜀𝜀1
0
0
0 ⎦
⎥
⎥
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⎥
⎤

 (2.6.4) 

is given. This yields normal stresses as 
𝜎𝜎1,2,3 = 3𝜆𝜆𝜀𝜀1 + 2𝜇𝜇𝜀𝜀1 = (3𝜆𝜆 + 2𝜇𝜇)𝜀𝜀1 (2.6.5) 

where σ1,2,3 the value of normal stresses, λ and μ are the Lame’s constants, and ε1 is normal strain. 
With the normal stress, increase in hydrostatic pressure ∆P follows: 

𝛥𝛥𝛥𝛥 = −
𝜎𝜎1 + 𝜎𝜎2 + 𝜎𝜎3

3
= −(3𝜆𝜆 + 2𝜇𝜇)𝜀𝜀1 (2.6.6) 

because the hydrostatic pressure ∆P is the averaged normal stresses.  

Volume is also expressed with the normal strain. As introduced in the section 2.2, relative volume 
change (∆V/V) is sum of normal strains. By considering together with the formula (2.6.2), 

𝛥𝛥𝛥𝛥
𝑉𝑉

= 𝜀𝜀1 + 𝜀𝜀2 + 𝜀𝜀3 = 3𝜀𝜀1 (2.2.13) 

is obtained. This formula is also explained by the figure 1. Assume a small cube with length L on a 
side. The volume of the cube (V) is  

𝑉𝑉 = 𝐿𝐿3  

 . If one direction is shortened by ∆L, normal strain of that direction (ε1) is defined as: 

𝜀𝜀1 =
𝛥𝛥𝛥𝛥
𝐿𝐿
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and the volume change due to that strain is 
𝛥𝛥𝛥𝛥 ⋅ 𝐿𝐿2  

. Since a hydrostatic pressure is supposed, this volume change is applied to all three directions. 
Therefore, the total volume change (∆V) of the cube becomes 

3𝛥𝛥𝛥𝛥 ⋅ 𝐿𝐿2  

and the relative volume change (∆V/V) follows: 
𝛥𝛥𝛥𝛥
𝑉𝑉

=
3𝛥𝛥𝛥𝛥 ⋅ 𝐿𝐿2

𝐿𝐿3
= 3

𝛥𝛥𝛥𝛥
𝐿𝐿

= 3𝜀𝜀1  

. 

 

 
Fig. 1. A conceptional diagram of volume decrease. A small cubic with length L on a side is 
compressed by the hydrostatic pressure (∆P). All three directions are shortened by ∆L. The green, 
blue and red cuboids denote volume decrease by the normal strain ε1, ε2, ε3, respectively. The 
smaller cube shown with black dashed lines denotes volume after the compression. Note ‘-1’ is 
multiplied by normal stress for expressing hydrostatic pressure (∆P), since the positive direction 
of pressure is outward while that of stress is inward. 

 

From the above, the bulk modulus (K) is defined: 

𝐾𝐾 ≡ −
𝛥𝛥𝛥𝛥

(𝛥𝛥𝛥𝛥/𝑉𝑉)
= −

−(3𝜆𝜆 + 2𝜇𝜇)𝜀𝜀1
3𝜀𝜀1

= 𝜆𝜆 +
2
3
𝜇𝜇 (2.6.7) 

where K is the bulk modulus, ∆P is the hydrostatic pressure, ∆V is the volume change, V is the 
volume, λ and μ are the Lame’s constants and ε1 is the normal strain. 

 

6.2 Young’s modulus 

In this section, we aim to define the Young’s modulus (E) by the Lame’s constants (λ, μ). Young’s 
modulus (E) is the ratio of the uniaxial stress to the strain in the direction of the uniaxial stress without 
other stresses: 

𝜎𝜎1 = 𝐸𝐸𝜀𝜀1   where 𝜎𝜎𝑖𝑖≠1 = 0 (2.6.8) 

where σ1 is the uniaxial stress, E is the Young’s modulus and ε1 is the strain. This stress field is shown 
in the figure 2. In the figure 2, uniaxial stress (σ1) is applied to a cube. This produces shrinkage in the 
direction of ε1 and expansion in the directions of ε2 and ε3. We simply compare the strain ε1 to the 
uniaxial stress (σ1) when we define the Young’s modulus. However, strains parallel (ε1) and vertical 
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(ε2, ε3) to the uniaxial stress are mathematically related. Using these relations, we derive the Young’s 
modulus using the Lame’s constants. 

 

 
Fig. 2. A conceptual diagram of the uniaxial stress (σ1) and the three normal strains (ε1,2,3). When 
the cube shown with the blue lines is compressed by the stress, it shrinks in the direction of ε1 
while expands in the directions of ε2 and ε3, turning into the cuboid shown with the red lines. 

 

We rewrite the formula (2.6.8) into the form of the generalized Hooke’s law for isotropic solids. 
From the formula (2.6.8),  

𝜎𝜎2 = 𝜎𝜎3 = 𝜎𝜎4 = 𝜎𝜎5 = 𝜎𝜎6 = 0  

is given, and by substituting it into the formula (2.5.31), 

⎣
⎢
⎢
⎢
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⎡
𝜎𝜎1
0
0
0
0
0 ⎦
⎥
⎥
⎥
⎥
⎤
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⎣
⎢
⎢
⎢
⎢
⎢
⎡𝜆𝜆 + 2𝜇𝜇 𝜆𝜆 𝜆𝜆

𝜆𝜆 𝜆𝜆 + 2𝜇𝜇 𝜆𝜆 0
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⎥
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⎢
⎢
⎡
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⎥
⎥
⎤

 (2.6.9) 

is obtained, where σ1 is the uniaxial stress, λ and μ are the Lame’s constants and ε1,2,3,4,5,6 are the 
strains. The formula (2.6.9) denotes the relations of the Young’s modulus with the Lame’s constants 
in the case of isotropic materials. From the equation (2.6.9), we have 

𝜎𝜎1 = (𝜆𝜆 + 2𝜇𝜇)𝜀𝜀1 + 𝜆𝜆𝜀𝜀2 + 𝜆𝜆𝜀𝜀3 (2.6.10) 

𝜎𝜎2 = 0 = 𝜆𝜆𝜀𝜀1 + (𝜆𝜆 + 2𝜇𝜇)𝜀𝜀2 + 𝜆𝜆𝜀𝜀3 (2.6.11) 

𝜎𝜎3 = 0 = 𝜆𝜆𝜀𝜀1 + 𝜆𝜆𝜀𝜀2 + (𝜆𝜆 + 2𝜇𝜇)𝜀𝜀3 (2.6.12) 

. Therefore, by combining the equation (2.6.8) 𝜎𝜎1 = 𝐸𝐸𝜀𝜀1and (2.6.10), we have an equation between 
the three strains (ε1,2,3): 

𝐸𝐸𝜀𝜀1 = (𝜆𝜆 + 2𝜇𝜇)𝜀𝜀1 + 𝜆𝜆𝜀𝜀2 + 𝜆𝜆𝜀𝜀3  

, which is equivalent to  
(𝜆𝜆 + 2𝜇𝜇 − 𝐸𝐸)𝜀𝜀1 + 𝜆𝜆𝜀𝜀2 + 𝜆𝜆𝜀𝜀3 = 0 (2.6.13) 

. From the three equations above ((2.6.11), (2.6.12), (2.6.13)), we erase the three strains (ε1, ε2, ε3). 
After erasing them, we have the formula expressing the Young’s modulus (E) using the Lame’s 
constants (λ, μ). By combining the equation (2.6.11) and (2.6.13), we have 

𝜆𝜆𝜀𝜀1 + (𝜆𝜆 + 2𝜇𝜇)𝜀𝜀2 + 𝜆𝜆𝜀𝜀3 = (𝜆𝜆 + 2𝜇𝜇 − 𝐸𝐸)𝜀𝜀1 + 𝜆𝜆𝜀𝜀2 + 𝜆𝜆𝜀𝜀3  

, which is equivalent to 
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𝜀𝜀2 =
2𝜇𝜇 − 𝐸𝐸

2𝜇𝜇
𝜀𝜀1 (2.6.14) 

. Similarly, by combining the equation (2.6.12) and (2.6.13), we have 
𝜆𝜆𝜀𝜀1 + 𝜆𝜆𝜀𝜀2 + (𝜆𝜆 + 2𝜇𝜇)𝜀𝜀3 = (𝜆𝜆 + 2𝜇𝜇 − 𝐸𝐸)𝜀𝜀1 + 𝜆𝜆𝜀𝜀2 + 𝜆𝜆𝜀𝜀3  

, which is equivalent to 

𝜀𝜀3 =
2𝜇𝜇 − 𝐸𝐸

2𝜇𝜇
𝜀𝜀1 (2.6.15) 

. By substituting the equation (2.6.14) and (2.6.15) into the equation (2.6.13), we have 

(𝜆𝜆 + 2𝜇𝜇 − 𝐸𝐸)𝜀𝜀1 + 𝜆𝜆
2𝜇𝜇 − 𝐸𝐸

2𝜇𝜇
𝜀𝜀1 + 𝜆𝜆

2𝜇𝜇 − 𝐸𝐸
2𝜇𝜇

𝜀𝜀1 = 0  

and therefore, 

𝐸𝐸 =
𝜇𝜇(3𝜆𝜆 + 2𝜇𝜇)

𝜆𝜆 + 𝜇𝜇
 (2.6.16) 

by simplification. The formula (2.6.16) shows the relation between the Young’s modulus (E) and the 
Lame’s constants (λ, μ). This means that the Young’s modulus (E) can be expresses using the bulk 
modulus (K) and rigidity G=μ, because the bulk modulus (K) is expressed by the Lame’s constants (λ, 
μ) as the formula (2.6.7) denotes. From the formula (2.6.7), we have 

𝜆𝜆 = 𝐾𝐾 −
2
3
𝜇𝜇 = 𝐾𝐾 −

2
3
𝐺𝐺  

. By substituting the equation into the equation (2.6.16),  

𝐸𝐸 =
9𝐾𝐾𝐾𝐾

(3𝐾𝐾 + 𝐺𝐺)
 (2.6.17) 

is obtained, which gives the relation between the Young’s modulus (E), the bulk modulus (K) and 
rigidity (G). 

 

6.3 Poisson’s ratio 

When a uniaxial stress is applied, the dimension of the body normal to the uniaxial stress increases, 
as shown in figure 3. Poisson’s ratio (ν) is defined as the negative ratio of the transverse strain to the 
axial strain: 

𝜈𝜈 ≡ −
𝜀𝜀2
𝜀𝜀1

= −
𝜀𝜀3
𝜀𝜀1

 (2.6.17) 

where σ1=Eε1, and σ2,3=0. (The formula should be numbered as (2.6.18) because (2.6.17) has already 
used. However, to prevent confusion, the numbers are not corrected below.) 

The Poisson’s ratio (ν) can be expressed using the other constants introduced above. By 
substituting the equation (2.6.14) into the equation (2.6.17), 

𝜈𝜈 = −

𝜀𝜀1(2𝜇𝜇 − 𝐸𝐸)
2𝜇𝜇
𝜀𝜀1

= −
2𝜇𝜇 − 𝐸𝐸

2𝜇𝜇
 (2.6.18) 

is obtained, which means that the Poisson’s ratio (ν) can be expressed using the Young’s modulus (E) 
and rigidity (μ). (In the lecture material, the minus sign in the right-hand side is missing. Here, the 
minus sign is added as a correction.) By substituting the formula (2.6.16) into the formula (2.6.18), 
the Poisson’s ratio (ν) can be expressed by the Lame’s constants (λ, μ): 

https://en.wikipedia.org/wiki/Rigidity
https://en.wikipedia.org/wiki/Poisson%27s_ratio
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𝜈𝜈 = −
2𝜇𝜇 − 𝜇𝜇(3𝜆𝜆 + 2𝜇𝜇)

𝜆𝜆 + 𝜇𝜇
2𝜇𝜇

=
𝜆𝜆

2𝜆𝜆 + 2𝜇𝜇
 (2.6.19) 

. Similarly, by combining the equation (2.6.19) with the equation (2.6.7) and G=μ, 

𝜈𝜈 =
𝐾𝐾 − 2

3𝐺𝐺

2 �𝐾𝐾 − 2
3𝐺𝐺� + 2𝐺𝐺

=
3𝐾𝐾 − 2𝐺𝐺
6𝐾𝐾 + 2𝐺𝐺

 (2.6.20) 

, where the Poisson’s ratio (ν) can be expressed using the bulk modulus (K) and rigidity (G). 

 

 
Fig. 3. A conceptual diagram of the uniaxial stress (σ1) and the three normal strains (ε1,2,3). When 
the cube shown with the blue lines is compressed by the stress, it shrinks in the direction of ε1 
while expands in the directions of ε2 and ε3, turning into the cuboid shown with the red lines. 
Different from the figure 2, one of the corners of the blue cube and red cuboid are aligned so that 
the arrows of the strains indicate the actual lengths of the deformation. 

 

The Poisson’s ratio (ν) has upper and lower limits, which are derived by the equation (2.619) and 
(2.6.20). The equation (2.6.20) is modified as: 

𝜈𝜈 =
3𝐾𝐾 − 2𝐺𝐺
6𝐾𝐾 + 2𝐺𝐺

=
𝐾𝐾 − 2

3𝐺𝐺

2 �𝐾𝐾 + 1
3𝐺𝐺�

  

, which shows that 

𝜈𝜈~
−2

3𝐺𝐺
2
3𝐺𝐺

= −1    𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝐺𝐺 ≫ 𝐾𝐾  

. From the equation (2.6.19), 

𝜈𝜈 =
𝜆𝜆

2𝜆𝜆 + 2𝜇𝜇
~
𝜆𝜆

2𝜆𝜆
= 0.5    𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝜆𝜆 ≫ 𝜇𝜇  

. As a side note, this 𝜈𝜈 → 0.5 can be derived also from the equation (2.6.20). When 𝐺𝐺 ≪ 𝐾𝐾, 

𝜈𝜈~
𝐾𝐾

2𝐾𝐾
= 0.5  

is obtained. (This is an additional information to the lecture material.) To summarize above, we have 
−1 < 𝜈𝜈 < +0.5 (2.6.21) 
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as the possible range of the Poisson’s ratio (ν). 

 

6.4 Examples of several elastic constants 

In this section, we see some examples of bulk modulus (K) and rigidity (G) of some solid 
materials. The materials are not isotropic but crystalline solids, so discussion here is made by 
assumpting the elasticity of crystalline solids as isotropic solids. We compare ten kinds of materials: 
corundum (Al2O3), periclase (MgO), calcium oxide (CaO), forsterite (Mg2SiO4), fayalite (Fe2SiO4), 
intermediate component of forsterite and fayalite ((Mg0.9Fe0.1)2SiO4), spinel (MgAl2O4), pyrope 
garnet (Mg3Al2Si3O12), potassium chloride (KCl) and sodium chloride (NaCl). 

First, we see bulk modulus (K) against temperature (T) at ambient pressure (figure 4). The bulk 
modulus (K) indicates how the solid is difficult to compress. As the figure 4 shows, bulk modulus (K) 
decreases only slightly with temperature increase. Moreover, the decreasing rate of bulk modulus (K) 
against temperature increase is almost constant because the lines are almost linear. Corundum 
(Al2O3), which is one of the most incompressible solids, has the highest bulk modulus (K) reaching 
250 GPa, and the second highest is spinel (MgAl2O4). Following them is pyrope garnet 
(Mg3Al2Si3O12), periclase (MgO) and olivine minerals (Fe2SiO4, Mg2SiO4, (Mg0.9Fe0.1)2SiO4) 
in the order. Within olivine minerals, fayalite (Fe2SiO4) is higher than forsterite (Mg2SiO4), and the 
intermediate component ((Mg0.9Fe0.1)2SiO4) and forsterite (Mg2SiO4) are almost the same. 
Calcium oxide (CaO) is slightly lower than the olivine minerals. Both periclase (MgO) and calcium 
oxide (CaO) have the rock salt structure, but the former is higher than the olivine minerals and the 
latter is lower than those. Alkali halide is distinctively low bulk modulus (K) than the oxide, 
especially potassium chloride (KCl) which is heavier than sodium chloride (NaCl). From the above, 
we conclude that oxide has the higher bulk modulus (K) than alkali halide, aluminum (Al) and 
magnesium (Mg) minerals have high bulk modulus (K), and Fe-Mg substitution does not affect the 
bulk modulus (K) significantly. 

 

 
Fig. 4. A graph of bulk modulus (K) of several materials against temperature (T) at ambient 
pressure. All the materials shown here are crystalline solids, so we assumpt the elasticity of the 
crystalline solids as isotropic solids. The color of each line corresponds with the caption below the 
graph. See text for detailed explanation. 

 

Next, we see rigidity (G) against temperature at ambient pressure (figure 5). Rigidity (G) indicates 
how difficult to shear the solids elastically. The order from high to low rigidity (G) is similar to that of 
the bulk modulus (K): corundum (Al2O3), periclase (MgO) and spinel (MgAl2O4) have high rigidity 

https://en.wikipedia.org/wiki/Solid
https://en.wikipedia.org/wiki/Isotropy
https://en.wikipedia.org/wiki/Crystal
https://en.wikipedia.org/wiki/Corundum
https://en.wikipedia.org/wiki/Periclase
https://en.wikipedia.org/wiki/Calcium_oxide
https://en.wikipedia.org/wiki/Forsterite
https://en.wikipedia.org/wiki/Fayalite
https://en.wikipedia.org/wiki/Spinel
https://en.wikipedia.org/wiki/Pyrope
https://en.wikipedia.org/wiki/Pyrope
https://en.wikipedia.org/wiki/Potassium_chloride
https://en.wikipedia.org/wiki/Sodium_chloride
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Ambient_pressure
https://en.wikipedia.org/wiki/Olivine
https://en.wikipedia.org/wiki/Cubic_crystal_system#Rock-salt_structure
https://en.wikipedia.org/wiki/Alkali_metal_halide
https://en.wikipedia.org/wiki/Oxide
https://en.wikipedia.org/wiki/Aluminium
https://en.wikipedia.org/wiki/Magnesium
https://en.wikipedia.org/wiki/Shear
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(G), which means that they are difficult to shear. Strictly speaking, the order of spinel (MgAl2O4) and 
periclase (MgO) is opposite between bulk modulus (K) and rigidity (G). The next high rigidity (G) is 
pyrope garnet (Mg3Al2Si3O12), then we have olivine minerals (Mg2SiO4, (Mg0.9Fe0.1)2SiO4, 
Fe2SiO4). A difference of the rigidity from the bulk modulus (K) is Fe end member of olivine, 
fayalite (Fe2SiO4), has much lower rigidity (G) than Mg rich olivine minerals (Mg2SiO4 and 
(Mg0.9Fe0.1)2SiO4). In the case of the bulk modulus (K), fayalite (Fe2SiO4) was higher than 
forsterite (Mg2SiO4). Therefore, the effect of Fe-Mg substitution is opposite and more prominent in 
the rigidity (G) compared with in the bulk modulus (K). Alkali halide solids (potassium chloride 
(KCl) and sodium chloride (NaCl)) have much lower rigidity (G) than oxide, which is the same as the 
bulk modulus (K). 

 

 
Fig. 5. A graph of rigidity (G) of several materials against temperature (T) at ambient pressure. 
All the materials shown here are crystalline solids, so we assumpt the elasticity of the crystalline 
solids as isotropic solids. The color of each line corresponds with the caption below the graph. See 
text for detailed explanation. 

 

Both the bulk modulus (K) and rigidity (G) decrease with temperature increase, so we compare the 
dependence of the two elastic constants (K (Ks in the figure) and G) on the temperature increase in 
figure 6. The left diagram shows the bulk modulus (K) at high temperatures normalized by the bulk 
modulus of each solid at ambient temperature. The right diagram shows the rigidity (G) at high 
temperatures normalized by the rigidity of each solid at ambient temperature. The ambient 
temperature is defined as 300 K for both the bulk modulus (K) and rigidity (G). Thus, the diagrams 
show the relative temperature dependence of the bulk modulus (K) and rigidity (G) for the ten 
materials. By the definition, the values at the temperature of 300 K are unity in these figures. As the 
figure 6 shows, the rigidity (G) has steeper slopes than the bulk modulus (K). Therefore, the rigidity 
(G) decreases more rapidly with temperature increase than the bulk modulus (K): in other words, the 
rigidity (G) has a stronger dependence on temperature. 
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Fig. 6. Graphs of normalized bulk modulus (K (Ks in the figure)) and rigidity (G) against 
temperature (T). Left: The bulk modulus (Ks) normalized by the bulk modulus at ambient 
temperature of a 300 K (Ks0). Right: The rigidity (G) normalized by the rigidity at ambient 
temperature of 300 K (G0). The materials shown here are crystalline solids, so we assumpt the 
elasticity of the crystalline solids as isotropic solids. The color of each line corresponds with the 
captions below the graphs. See text for detailed explanation. (Currently, both Fe2SiO4 and 
MgAl2O4 are shown in green in the right graph, but considering from the left graph, the caption 
and line for Fe2SiO4 in the right graph may have been supposed to be in pink.) 
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