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3. Lattice vibration 

3.4. Einstein model for heat capacity 

This section is dedicated to modeling the temperature dependence of (isochoric) heat capacity 

(C) for crystals by using Einstein model. Here, crystal is approximated as an assemblage of harmonic 

oscillators (Fig. 3.4.1). We need to derive the total (internal) energy (Etotal) of the system to obtain C, 

because C is a derivative of Etotal with respect to temperature (T). Firstly, we will recall the energy 

level of the quantum harmonic oscillator, which are derived in the section 3.3. Then we will derive 

the average quantum number of the harmonic oscillators in solids. Lastly, C will be acquired from 

the total vibrational energy Etotal of the system. 

 

    

Fig. 3.4.1. The simplest model for crystal lattice. Each atom vibrates around a stable lattice point. 

 

3.4.1 Energy level of quantum harmonic oscillator 

In this section, we will obtain the total vibrational energy Etotal of crystals based on quantum 

mechanics and statistical mechanics. To begin with, let us recall the energy level of a quantum 

harmonic oscillator. As derived in the section 3.3, the energy level of the harmonic oscillator which 

has a particular vibrational mode and the angular frequency (ω) can be written as: 

𝜀𝑛 = (𝑛 +
1

2
)ℏ𝜔 (3.4.1) 

Here, n (= 0, 1, 2, …) is quantum number and ħ is the reduced Planck constant (Fig. 3.4.2). In the 

case of n = 0, the harmonic oscillator is in the fundamental mode and so has the ground-state energy 

level: ε0 = ħω/2. Considering that there are Nn atoms whose energy level is εn at given ω and T in the 

N-atom crystal, the probability that the presence of atoms in the n-th state can be expressed by using 

Boltzmann distribution: 

𝑁𝑛
𝑁
=

𝑒−𝜀𝑛/𝑘B𝑇

∑ 𝑒−𝜀𝑠/𝑘B𝑇∞
𝑠=0

=
𝑒−ℏ𝜔/2𝑘B𝑇𝑒−𝑛ℏ𝜔/𝑘B𝑇

𝑒−ℏ𝜔/2𝑘B𝑇 ∑ 𝑒−𝑠ℏ𝜔/𝑘B𝑇𝑠
=

𝑒−𝑛ℏ𝜔/𝑘B𝑇

∑ 𝑒−𝑠ℏ𝜔/𝑘B𝑇𝑠
 (3.4.2) 

where kB is Boltzmann constant. Eq. (3.4.2) regards the total number of all possible energy levels as 

infinity. It is natural and accurate enough considering that real matters contain ~1023 atoms and/or 
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molecules. Then we can derive the average quantum number 〈n〉 of the system as an expected value 

for n-th state using Eq. (3.4.2): 

〈𝑛〉 =∑𝑠
𝑁𝑠
𝑁

𝑠

=
∑ 𝑠𝑒−𝑠ℏ𝜔/𝑘B𝑇𝑠

∑ 𝑒−𝑝ℏ𝜔/𝑘B𝑇𝑝
 (3.4.3) 

By introducing a parameter x ≡ e−ℏω/kBT, Eq. (3.4.3) becomes: 

〈𝑛〉 =
∑ 𝑠𝑥𝑠𝑠

∑ 𝑥𝑝𝑝
=
𝑥 (1 − 𝑥)2⁄

1 (1 − 𝑥)⁄
=

𝑥

1 − 𝑥
 (3.4.4) 

Then 〈n〉 is obtained as a function of temperature: 

〈𝑛〉 =
𝑒−ℏ𝜔/𝑘B𝑇

1 − 𝑒−ℏ𝜔/𝑘B𝑇
=

𝑒−ℏ𝜔/𝑘B𝑇𝑒ℏ𝜔/𝑘B𝑇

(1 − 𝑒−ℏ𝜔/𝑘B𝑇)𝑒ℏ𝜔/𝑘B𝑇
=

1

𝑒ℏ𝜔/𝑘B𝑇 − 1
 (3.4.5) 

This function form represents the Planck distribution. Since 〈n〉 ≫ 1 for many ω and T, the 

average energy of an oscillator with ω at T is expressed as: 

〈𝜀(𝜔)〉 = (〈𝑛〉 +
1

2
)ℏ𝜔 ≈ 〈𝑛〉ℏ𝜔 =

ℏ𝜔

𝑒ℏ𝜔/𝑘B𝑇 − 1
 (3.4.6) 

 

  

Fig. 3.4.2. Quantum harmonic oscillator potential (solid curve) and its energy levels (dashed lines). 

 

Let us derive the total vibrational energy of many-particle solids. Although ω was given in the 

above-mentioned theory, atoms’ ω of matters should have a certain variety. Hence, defining the 

population of vibrational modes with a frequency ωi as D(ωi) (density of states), we can access the 

subtotal vibrational energy Ei for ωi: 

𝐸𝑖 = 𝐷(𝜔𝑖)〈𝜀(𝜔𝑖)〉 (3.4.7) 

By combining Eqs. (3.4.6) and (3.4.7), the total energy can be calculated as: 

𝐸total =∑𝐸𝑖
𝑖

=∑𝐷(𝜔𝑖)〈𝜀(𝜔𝑖)〉

𝑖

=∑𝐷(𝜔𝑖)
ℏ𝜔𝑖

𝑒ℏ𝜔𝑖/𝑘B𝑇 − 1
𝑖

 (3.4.8) 

If we know the enough fine D(ω) data, Etotal can be described by an integration as well: 
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𝐸total = ∫𝐷(𝜔)〈𝜀(𝜔)〉d𝜔 = ∫𝐷(𝜔)
ℏ𝜔

𝑒ℏ𝜔/𝑘B𝑇 − 1
d𝜔 (3.4.9) 

 

3.4.2 Heat capacity 

Let us derive the heat capacity from the equations obtained until here. In statistical mechanics, 

heat capacity C can be derived by the thermodynamic relationship with the internal energy: a 

temperature derivative of the total energy Etotal. Thus, C can be written as follows from Eq. (3.4.9): 

𝐶 =
d𝐸total
d𝑇

=
d

d𝑇
∫𝐷(𝜔)

ℏ𝜔

𝑒ℏ𝜔/𝑘B𝑇 − 1
d𝜔 (3.4.10) 

where density of states D(ω) is assumed to be a function of ω only and is independent of T. Then, 

𝐶 = ∫𝐷(𝜔)
d

d𝑇

ℏ𝜔

𝑒ℏ𝜔/𝑘B𝑇 − 1
d𝜔 (3.4.11) 

= ∫𝐷(𝜔)
−ℏ2𝜔2/𝑘B𝑇

2𝑒ℏ𝜔/𝑘B𝑇 

−(𝑒ℏ𝜔/𝑘B𝑇 − 1)2
d𝜔  

= ∫𝐷(𝜔)𝑘B
(ℏ𝜔/𝑘B𝑇)

2𝑒ℏ𝜔/𝑘B𝑇 

(𝑒ℏ𝜔/𝑘B𝑇 − 1)2
d𝜔 (3.4.12) 

When we define a variable y ≡ ħω/kBT, Eq. (3.4.12) can be written as a simpler form: 

𝐶 = 𝑘B∫𝐷(𝜔)
𝑦2𝑒𝑦

(𝑒𝑦 − 1)2
d𝜔 (3.4.13) 

 

3.4.3 Einstein model and its problem 

Einstein model is the simplest model which describes thermal properties of crystals at various 

temperatures. It assumes all atoms are mutually independent and oscillate with the same frequency ωα. 

On such assumption, the density of states of Einstein solids is given by: 

𝐷(𝜔) = {
1   if 𝜔 = 𝜔𝛼
0   if 𝜔 ≠ 𝜔𝛼

 (3.4.14) 

By substituting ωα to Eq. (3.4.6), the average energy of one-dimensional oscillation of an atom in 

Einstein solids 〈εEs〉 is: 

〈𝜀Es〉 =
ℏ𝜔𝛼

𝑒ℏ𝜔𝛼/𝑘B𝑇 − 1
 (3.4.15) 

In the case of a three-dimensional crystal which contains N atoms, the vibration of atoms have 3N 

directional components (degree of freedom) in total because the oscillation of each atom has three 

components. Its total energy EEs is thus expressed as: 

𝐸Es = 3𝑁〈𝜀Es〉 =
3𝑁ℏ𝜔𝛼

𝑒ℏ𝜔𝛼/𝑘B𝑇 − 1
 (3.4.16) 

Therefore, the heat capacity of Einstein solids is given by the following equation: 

𝐶 =
d𝐸Es
d𝑇

=
3𝑁𝑘B(ℏ𝜔𝛼/𝑘B𝑇)

2𝑒ℏ𝜔𝛼/𝑘B𝑇 

(𝑒ℏ𝜔𝛼/𝑘B𝑇 − 1)2
 (3.4.17) 

The detail of the calculation is already given in the section 3.4.2. By defining the temperature Tα as: 

𝑇𝛼 ≡
ℏ𝜔𝛼
𝑘B

 (3.4.18) 

Eq. (3.4.17) turns into: 
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𝐶 = 3𝑁𝑘B (
𝑇𝛼
𝑇
)
2 𝑒𝑇𝛼/𝑇

(𝑒𝑇𝛼/𝑇 − 1)2
 (3.4.19) 

Here, Tα is Einstein temperature, which characterizes thermal properties of crystals at low-T when 

Tα ≪ 1 and those at high-T when Tα ≫ 1. In order to catch the high- and low-T limit of the heat capacity, 

let us write the exponential term eTα/T as a power series. The Laurent series of eTα/T about Tα/T = 0 is: 

𝑒𝑇𝛼/𝑇 = 1 +
𝑇𝛼
𝑇
+
1

2!
(
𝑇𝛼
𝑇
)
2

+
1

3!
(
𝑇𝛼
𝑇
)
3

+⋯ (3.4.20) 

Thus, the high-T limit (T → ∞, Tα/T → +0) of this term is: 

𝑒𝑇𝛼/𝑇
𝑇𝛼/𝑇→+0
→      1 +

𝑇𝛼
𝑇
→ 1 (3.4.21) 

From Eqs. (3.4.19) and (3.4.21) the heat capacity at high temperature is then written as follows: 

𝐶𝑉,Es
𝑇𝛼/𝑇→+0
→      3𝑁𝑘B (

𝑇𝛼
𝑇
)
2 1 − 𝑇𝛼 𝑇⁄

(1 + 𝑇𝛼 𝑇⁄ − 1)2
= 3𝑁𝑘B (1 −

𝑇𝛼
𝑇
) → 3𝑁𝑘B (3.4.22) 

In the case that N equals to one mole, 

𝐶𝑉,Es → 3𝑅 (3.4.23) 

where R is the gas constant. This result consistent with the fact that molar heat capacity of many solids 

is close to 3R ≈ 25 J(mol K)−1 by experiments (Dulong-Petit law) at high T such as ≥ ~2Tα. In addition, 

the high-T limit of CV, Es equals the isochoric heat capacity of an ideal gas. This coincidence is 

convincing when we look at the definition that an ideal gas has no intermolecular interaction. In contrast, 

for the low-T limit (T → +0, Tα/T → ∞) of eTα/T is: 

𝑒𝑇𝛼/𝑇 − 1
𝑇𝛼/𝑇→∞
→     𝑒𝑇𝛼/𝑇  (3.4.24) 

Hence, the low-T limit of CV, Es is: 

𝐶𝑉,Es
𝑇𝛼/𝑇→∞
→     3𝑁𝑘B (

𝑇𝛼
𝑇
)
2 𝑒𝑇𝛼/𝑇

(𝑒𝑇𝛼/𝑇)2
= 3𝑁𝑘B

(𝑇𝛼 𝑇⁄ )2

𝑒𝑇𝛼/𝑇
→ 0 (3.4.25) 

Unlike the case of CV, Es at high T (Eqs. (3.4.22) and (3.4.23)), CV, Es at low T near 0 K contains the 

reduced Planck constant ħ inside Tα (cf. the second formula from the right side of Eq. (3.4.25)). This 

demonstrates that we should take quantum effects into consideration to understand low-T solids’ heat 

capacity. Contrastively, the heat capacity at high T is nearly constant and can be sufficiently explained 

by classical mechanics. Fig. 3.4.3 shows CV, Es at various temperatures together with experimental 

results for several monatomic crystals. The Einstein model took a different approach from previous 

ideas at that time and succeeded in explaining the low-T behavior of the heat capacity of crystals. 

Although heat capacity predicted by the Einstein model is roughly consistent with experimental 

results, there are significant discrepancies at low T (Fig. 3.4.3). This is due to the following factors: (1) 

the frequency of atoms is assumed to be common, and (2) each harmonic oscillator is independent. The 

sharp change in CV, Es at low T indicates that, unlike real solids, atoms in the Einstein solid remain in 

the ground state (ε0) and do not excite near 0 K. Once the system reaches an enough high temperature 

around ~Tα/10, many atoms are raised to the excited state (ε1), and CV, Es rises as a result. If we consider 

various ω and coupled oscillation of lattices, the model heat capacity will be significantly improved for 

many monatomic crystals. 
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Fig. 3.4.3. Comparisons of the experimental molar heat capacity data to the Einstein model for C 

(diamond) (Desnoyehs and Morrison, 1958; Victor, 1962), Cu (White and Collocott, 1984), and Pb 

(Stedman et al., 1967) in (a) linear and (b) logarithmic representations. The horizontal dashed line 

at 3 indicates the Dulong-Petit limit. 
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