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This section

q Goal of this section: To obtain a heat capacity model of a crystal by assuming
that the lattice vibrates with a single frequency

@ Einstein model for heat capacity

g Flow of derivation
@ The energy levels of one-dimensional quantum harmonic oscillator

@ The average quantum number of the harmonic oscillators
U Planck distribution
@ Total vibrational energy

@ Differentiation of the total vibrational energy by temperature to obtain a heat
capacity




Total vibrational energy

g Sub-total vibrational energy at a given frequency = (the number of vibrational
modes) * (average vibrational energy)

@ E; = D(w;){e(w;)) (3.5.1)

g Total energy of the lattice vibration = sum of sub-total vibrational energy at
each frequency

D Erorar = ZiE; = | E(w)dw = | D(w){e(w)) dw (3.5.2)




Energy level of guantum mechanical harmonic

oscillator
g Quantum-mechanical harmonic oscillator model WWW s 4" E L 1ho/2
@ The energy levels of a particular mode with the
angular frequency w and its harmonics: M 4 9 hw/2
.- 1
e, = (n + E) hw (3.5.3) VVVV 3 7 he/2
§ m: quantum number
/\N\ 2 5 hu/2

§ n = 0 term: zero-point energy &, = %hw

\/\/ 1 3hw/2

o The fundamental mode

/\ 0 hw/2




Relative population of each energy level

g The fraction % of an oscillator with the n-th energy at an given frequency w

and a temperature, T
@ (probability to have the n-th level of energy) / (sum of probabilities for all

levels)
@ Using Boltzmann distribution: B, o exp (— :_”T)
B
—(n+l)hw> nhw
0 Mo = exp( ) o) (3.5.4)
N o (—(s+%)hw> » exp(_shw) 9.
2s=1 €XP ~ kpT S kgT

U The Y2 disappeared by cancelation




Planck distribution

q The average quantum number (n)

@<n> :ZSS%:ZS;exp(—%> _ZSS{eXp(—,quT)}? :ZS_ng_( X )/( 1 )_ X

p eXp<_%> B Zp{%p(-%)} 2p XP (1-x)2/7 \1-x 1-x
(3.5.5) X = exp (_ ’%)
oy = =) __eoligr)enlin) (3.5.6)

U Planck distribution

g Average energy of an oscillator with an angular frequency w at a temperature T
D (c(w)) = ((n) + %) hw =~ (nYhw = f;i » (3.5.7)

m o (7 7) N



Total vibrational energy

g The total vibrational energy of the lattice

hwi
D Eiotal = Zi<€((‘)i)> = )i ha(:i (3.5.8)
oa{feh)
U Each frequency can have more than one modes due to different K and
polarization

g By approximating (3.5.5) by integration:
h
D Etotal = | D(w) h(:) dw (3.5.9)
exp(m>—1
U D(w): density of states as a function of w
§ The Planck distribution takes care of the distribution at a given w
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Heat capacity

q Heat capacity C: T derivative of Eiytq
__dEyjp _ d hw
DC = = deD(a)) T dw (3.5.10)
U D(w): approximately independent from T

@C = [ D(w) ddT( he )da)

exp(hw/kgT)—1

= fD(w) (_ (exp(hwf;(:BT)—l)z) ddT (exp (7(_2)%) N 1) do
- f D(w) (_ (exp(hwf;(llc)BT)—l)z) eXp (%) (_ Z_(:T_lz) dow

. h?w? exp(hw/kgT)
= [ D(w) T e (he k)= 1)? dw (3.5.11)

_ (hw/kpT)? exp(hw/kpT) | = _ 2e*
= [ D(w)kg “zexgmw /;‘BT):)ZB dw = kg [ D(w) (e’;_el)z dw (3.5.12)

- O x = ho/kgT (3.5.13) “‘



Einstein solid -1

g Einstein solid: the simplest model of heat capacity in which the results of
statistical and quantum mechanics are considered.

@ Assumption
U All atoms oscillate with the same frequency
§ w = w, only
o v, = wy,/2m: Einstein frequency

§8 D(w) = D(w,) = const. (3.5.14)
@ The average energy of one-dimensional oscillation of an atom:
U (eps) = —ps (3.5.15)
exp(m)—l




Einstein solid -2

q The total energy of the crystal
consisting of 3-dimensional N atoms:

B _ 3Nhwy
@ Eg, = 3N(egs) = exp(hwg/kpT)—1 (3.5.16) o

g The heat capacity of the crystal:
swk(jet) exo(ief) )
2
exe(i7)-1
_ay kB( )2[ Xp( )

eXp( ) 1] (3'5'17) 0o 04 08 12z 18 2
U Ta — h(l)a/kB kT/E
§ Einstein temperature

D CV,ES —

https://en.wikipedia.org/wiki/Einstein_soli




High T limits of Einstein heat capacity

q HT Limit; T = o [ 3Nkg

1

ST,/T -0 I IR

D exp(T,/T) - 1+T,/T -1 o.a:
2

%) CV,ES — 3Nkg(To/T)* exp(Ty/T)

[exp(Ta/T)-1]? S

0.8

=

N 3Nkg (Ta/T)2(1+Toc/T)
(1+Ty/T—1)2

— 3NkB

4

0.
(3.5.18) |
qgFor one mole solid, 0.2 |
@ Cyps - 3R (3.5.19)

(1 Approaches to Dulong-Pulit law %0 o4 08 12 16 2

§ 3R: Dulong-Putit limit kT/e

https://en.wikipedia.org/wiki/Einstein_solid




Low T limits of Einstein heat capacity

gLTLmMit: T -0
DT,/T —
D exp(T,/T) — 1 - exp(T,/T)
—_ BNkB(TO(/T)Z exp(Ty /T)
2 CvEs = ™ lexp(ta/ -1

3NkB(Toc/T)2
p— 0 (3.5.20)

@ exp(Ty/T) > (Ty/T)?:
U Cy gs rapidly geos to zerowith T - 0

.‘ 0 i ‘h i I i i i | i i i I i i i | i i i I
* 0 R 0.4 0.8 1.2 1.6 2
e KT /e

https://en.wikipedia.org/wiki/Einstein_solid
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Underestimation of low-T heat capacity by
Einstein model

g Einstein model vs real solids e L
@ Systematic deviation of heat capacity at low T !
U The lattice vibration with a given w cannot be excited @ .k

at low T due to low thermal energy Heat

Capacity 15

@ The oscillation of solids: far from single- w 1004

U Maybe the w of vibration excited at low T should be
low
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