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This section

q Lattice vibrations: collection of oscillating atoms

g a The physical law that oscillating microscopic particles follow should be
understood

g The motions in microscopic scales: governed by quantum physics
@ a some introduction of quantum physics




Schrodinger Equation

g We will argue a given state of a collection of oscillating atoms

q The time-independent Schrdodinger equation for one particle with mass m and
energy E in one-dimensional space:

g -, vy = Ey (3.4.1)

2m dx?

(1 h: the Planck constant, 6.626 ... x 10734 Js
(1 A = h/2m: the reduced Planck constant, 1.05457 ... x 10734 Js

U Y (x): the wavefunction giving probability finding the particle at the position x
0 V(x) : the potential energy that is operated to the particle at the position x
@ The wavefunction contains all information about the motion of the particle




1D harmonic oscillation

g Harmonic oscillation
@ a particle with a restoring force proportional to its displacement:

UF =—kx (3.4.2) . 1
§ k : the force constant:
@ The force can be related to the potential energy

GF =—dv/dx (3.4.3)
@ The potential energy for the harmonic oscillation g
uvVv=01/2)kx? (3.4.4)

§ parabolic potential energy

Displacement, x

g The Schrodinger equation for the particle in the parabolic potential:
h2 d2y

1
- -+ Ekx2¢ = Ey (3.4.5) _“E



Solution of 1D harmonic oscillator -1

g In classical mechanics,
@ Equation of spring: F = —kx

@ Equation of motion: F = mjof
¢ g (3.4.6)
m-—— = —KX 4.
@ Solution: x = Acos(wt + 0)
x = Acos(wt + 0) with w =+ k/m (3.4.7)
@ The parameter k Is replaced by
k = mw? (3.4.8)
@ The potential energy is written as V(x) = mw?x?%/2 (3.4.9)
. h% d%yY | mw?® o, _ :
= + x“yY = EyY (3.4.5")

2m dx? 2




Solution of 1D harmonic oscillator -2

hZ d*y

g The equation (3.4.9) ~ oz T 21/) Ev is difficult to solve
q Modified as — Zh; d:fc(zx) = (E ;mw X )1/)(x) (3.4.10)
g The valuables x and E are replaced by
D x = h/mwé (3.4.11)
DE = (hw/2)e (3.4.12)
g Then the equation become in a simple form
3 LD+ (e - £)9() = 0 (3.4.13)
Uylx) a¢)

- U However, this equation is still difficult to solve... .-‘E



Solution of 1D harmonic oscillator -3

g Assuming the solution of (3.4.13) dzd";(f) + (e = &H)p(é) =0 as:

@ ¢=HEexp(-%) (3.4.14)

g We substltute Eq. (3.4.17) into (3.4.13), then we find
04 = qa @ e (- )] = [T er (- 5) - n@ g {on (5]

de?
d% 3 X p( 52) H{exp(——)] [d—gz—Zf— (52—1)H]exp( 2)
% %—25— €2~ DH|exp (-5) + e —DHexp(-5) = 0 (3.4.15)

(3.4.16)

Q%—Zf— (e—l)H]exp( 2) 0




Solution of 1D harmonic oscillator -4

q By removing exp (— —) from (3.4.16)

% [d—fz -~ 25— (e-D|HE = (3.4.17)

g We assume the H can be expanded by an algebra series
D H(E) = Yoo aré® (3.4.18)
g We substitute (3.3.17) into (3.3.16), and we have:
D Y=o k(k — )& 2 = 28 X ka§ 7t + (e — D Xploai§ = 0
@ Yoo k(e — Dad 2 = 2(0- a0 £ + TP, kardk) + (e — 1) Lo arék = 0

B Yotk +2)(k + Dag 8 =237 ckapé  + (e — D) Xigaré® =0
D Ye o[k +1)(k+2)ag, — 2k —e+1)a,]é* =0 (3.4.19)

- - ". E



formula de recursividad; formula de recurrencia

Solution of 1D harmonic oscillator -5

q To make (3.4.19) X% [(k + 1) (k + 2)ay,, — (2k — £ + 1)a,]E* always 0, the inside of
the square bracket must be zero by:
2k—¢e+1

%) Ai+2 — (k+1)(k+2) ay (3420)
q Using (3.4.20), H(§) = Y%, ax&* becomes,
@H(f)—ao(l——fz — 18344154_...)
tay (- S8+ ) (3.4.21)

q The formula (3.4.21): an infinite series.
@ Without special conditions, the series diverges at large ¢

@ The conditions for the convergence of (3.4.21) at any ¢

-



Solution of 1D harmonic oscillator -6

g When k is large, the recurrence formula (3.4.20) becomes

B sz = =y (3.4.22)

g If a function exp &2 is expanded,

D exp &2 :1+§2+%§4+%§6+---+ !

k
(k/2)! f

(3.4.23)

q The recurrence (3.4.21) expresses the term of (3.4.22). Thus H(§) diverges
when & - o

@ H(E) =~ Aexp(é?) S (3.4.24)

U The series Y51, a,&* must be finite.

q The n term is zero so that the higher terms are zero and the series is finite.




Solution of 1D harmonic oscillator -7

q If @ Hermite polynomials
Be=2n-1 (3.4.25) @ Hy($) = ao
q then even a, is non-zero, the higher @ H,(§) = a;¢
terms are zero: the series becomes B H, (&) = ag (1 _ ifz)
finite.
. g-2n+1 . B H3(¢) = a4 (1__8; )
D Az =~ +D(m+2) n T 0 2 4
(3.426) 2H)=4a (- 58+ 1555
B Hs(§) = a; (1— 528 + =2 ¢5)

q H(¢) changes by the value of ¢ =

2n—1 2

(3.4.27)

q Each H(¢) is expressed using H,(¢)




Solution of 1D harmonic oscillator -8

q From (3.4.15) and (3.4.27), the wavefunction under the potential of the
harmonic oscillator:

B $(&) = cH(E) exp (- %2) (3.4.28)
@ p(x) = cH (\/@x) exp (— 22 x?) (3.4.29)
@ Allowed energies: E = %‘” 2n+1) =hw (n + %) (3.4.30)

0 Eq. (3.4.12): E =2
UEqg.(34.25).¢ =2n+1




Energy levels

q The permitted energy levels:

BE, =g, =" (v+3) (3.4.30) - v
av=012,.. quantum number T ‘\/Potential snery )7
0w = (k/m)'/2, (3431) 3 ]| s

§ w Increases with increasing k and decreasing m. @* \\ - /4
U E,=1/2hw atv =0 (3.4.32) E T8 i 1
§ non-zero zero-point energy A \\ //.,
g The separation between adjacent levels: L o :
@ Eyy1— E, = ho (3.4.33) Deplecement.

U ldentical for all v.

- U The energy levels aw form a uniform ladder of spacing. —"
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