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Fundamental concept of statistical mechanics

q Principle of equal a priori probabilities = A state with the largest number of
configurations, W, appears most probably.

g Entropy, S, is defined by:
DS =kglnw (3.2.1)
U W: the number of configurations
U kz = 1.380 x 10723 J/K: Boltzmann constant
U The state with the largest S appears most probably.

g Temperature, T, is defined by:
as

@ 1/T = (—

aE)other conditions
U The rate of entropy increase with increasing energy

(3.2.2)




Boltzmann distribution

q Boltzmann distribution: the number of particles with energy ¢; in a system with
the fixed large number of particles N and fixed energy E at a temperature T

D n; = 5 eXDIZ—k(Zﬁ exp (— I:T‘T) X exp (— k‘:T) (3.2.1)
U exp (— k‘:T) : Boltzmann factor

U ) exp (—%) partition function

g The average, mean, or expected value of a physical quantity x of the particle,

(x)
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Lagrange multiplier -1

g The method of Lagrange multipliers: a strategy for finding local maxima/
minima of a function subject to equality constraints

@ Find a point (a, b) where a function f(x,y) has a maximum/minimum with a
constraint g(x,y) =0

U Define Lagrangian function: L(x,y) = f(x,y) + Ag(x,y) (3.2.3)
§ A: Lagrange multiplier

U The necessary conditions:

dL(a,b) _ dL(a,b) _ dL(a,b) _
§ i =t =R =0 (3.2.4)

§8 The point (a, b) is different from points where f(x,y) has maxima/minima
without the constraint g(x,y) =0

0 — of 97
g(x,y) =0 but 7 0 and " + 0 at (a,b)
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Lagrange multiplier -2

aL(a b) aL(a,b) __0dL(a,p) _
dy oA

q The reason for (3.2.4)

®5=a(f—lg)=5g=g=0
U ldentical to the condition g =0

~ Odf dg Odf ag
Q——O ——O 5_’15’@_’1 5
of Of dg 0dg
% (55) = A(E,a) (3.2.5)
U f =dq, g =0 curves are parallel in the x-y
plane

U When (x, y) moves along g = 0, f does not
change at a minimum/maximum (a, b)

§ & f =d;, g =0 are parallel at (a, b)

Red curve: the constraint g(x, y)

= c. Blue curves: contours
of f(x, y)=d.
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Lagrange multiplier -3

g The meaning of 1 y
af df\ _ . (9g dg 4
2 (5c5,) =2 (5355
(3.2.5)

U The ratio of the change
of f(x,y) to the change
of g(x,y) by changing
parameters (x,y), where

f(x,y) and g(x,y) are
not constant




Derivation of Boltzmann distribution -1

g Given conditions

@ A system composed of the fixed number of N particles with a fixed total
energy E

UN: very large
@ Energy of a particle: ¢; (i =0,1,2,...)
@ The number of particles having an energy ¢;: n;

g The total number of particles

UN=)72.n (3.2.6)
q The total energy of the system
urk= Z?(;O 1n;&; (327)
§ The total energy = sum of (energies of the particles)*(number of the

particles)
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Derivation of Boltzmann distribution -2

q The number of configuration of the system (ny,n{,n,,...), W:
N!

BW =———— (3.2.8)
g The entropy of the system, S:

BS=kgInW = kg |nn0!nﬁ!n2!m = kg(INN! =¥, Inn;!) (3.2.9)
g The Stirling’s approximation:

AINN'=NInN—-N (3.2.10)

q Using the Stirling’s approximation (3.2.10), InW in (3.2.9) becomes
BInW=NInN-N — Z;-X;O(Tli In n; — Tli) (3211)
=NInN — Z?;O n; In n; — [N — Z{«;O nl-] =NInN — Z;X;O n; In n; (3212)

- (3.2.6): N = Y2, n; I.‘E



Derivation of Boltzmann distribution -3

g We will obtain the conditions for the largest InW a dinW =0

g The total number of particles and the total energy of the system are fixed:
@ (3.2.3) N =Y2n; a dN = }2,dn; =0 (3.2.13)
@ (3.2.4) E = Y2 onig a dE = Y2y &dn; =0 (3.2.14)
q Using (3.2.24), the change in the logarithmic number of microstates, InW, is
GdinW =d(NInN = Y2,n;Inn;)
= —(W) —>2o(dn;Inn; + n;dInn;)

= — %72, (dn; Inn +72) RdN=0,dInN=0,dInn, =X

{ n;

= —Z(lx;()(l + |n Tli) dnl-
=~ — ¥ Inn; dn; (3.2.15)




Derivation of Boltzmann distribution -4

q Applying the method of Lagrange multiplier to obtain the maximum In W, which
Indicates the most probable state, under conditions of fixed N and E

DL=InW +aN + SE
Ua, B: Lagrange multiplier, constant
@ dL =dInW + adN + SdE
= —YizoINnidn; —aiZodn; — B X2 &dn;
(1 (3.2.15): dInW = = Y%, Inn; dn;, (3.2.13): dN = ¥, dn;, (3.2.14): dE =

Qi=o €101,
BdL =-Y2,(nn; + a + fg;) dn; (3.2.16)
@dL = Y 2,(nn; +a+Le)dn; =0 (3.2.17)
DlInn;, +a+ L& =0 (3.2.18)
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Derivation of Boltzmann distribution -5

q (3.2.18) Inn; + a + B&; = 0 provides the form of the Boltzmann distribution
D n; =exp(—a — Lg;) = exp(—a) exp(—L¢;) = Aexp(—pL¢;) (3.2.19)
U Inn; and ¢; are balanced to maximize W at constant N and E

q Determining the constant 5
lnn; +a+ ¢ =0
Un;Inn; +an; + fn;g; =0
axn Inn;+aXn, +Ene =0 (3.2.20)
@ Using (3.29) InW =2=NInN — 2Z;n; Inn;
UONINN—-—InW +aXn; +Zn;e =0
@ By multiplying Eqg. (3.2.21) by kg
§ kyNINN —kgInW + akgxn; + fkgZin,eg =0 (3.2.21)




Derivation of Boltzmann distribution -6

@ From the definition of entropy (3.2.9) S = kg InW, (3.2.21) kzyNInN —
kB InW + C(kBZiTli + ,BkBZiTLiEi = 0 becomes

UkBNInN—S+C(kBN+ﬁkBE:O

US=kgNINN + akgN + fkgE (3.2.22)
@ Differentiation of (3.2.22) by E
@2 == (kgNINN + akgN + fkgE) = fkg (3.2.23)
@ From the definition of the temperature, T, g—z = %

. 1 1




Derivation of Boltzmann distribution -7
g Determination of the factor A
@ Substituting (3.2.35) 8 = RB%T into (3.2.29) Inn; + @ + Be; =0
Ulnn;, +a+¢e/kgT =0 (3.2.36)
U n; = exp(—a) exp (— k‘:T) = Aexp (— oL ) (3.2.37)

kgT
@ Substituting (3.2.37) into (3.2.17) N =),;n;

UN:ZiAexp(— - )

kgT
UA=——— (3.2.38)
z:"eXp(_kBT>
q Boltzmann distribution
_ N _ & &
Dn; = exp( RBT) o< exp( kBT) (3.2.39)

S o) N



€i
Why n; « exp ( ) ?
kgT
q The probability where a state (ny, n{,n,, ... ) appears: proportional to the

. . N!
number of configuration, W =
Tlo!n1! le'

g The entropy is the natural logarithm of the number of configuration: S =
kgInW

@ a The probability should proportional to exp(5/kg)

g When many particles have the same energy ¢;, the number of configuration
decreases: dInW = =372 Inn,; dn;

g The Lagrange multiplier f = kiT . the ratio of the changes in ki =InWtoE a
B B
€j

exp (— - T): how W decreases by E change by ¢; increase a proportional to n;
B

N
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