Mineral Physics I Chapter 3. Lattice vibration Section 1. Boltzmann distribution

Tomoo Katsura,

Bayerisches Geoinstitut, University of Bayreuth, Germany

Fundamental concept of statistical mechanics

q Principle of equal a priori probabilities \Rightarrow A state with the largest number of configurations, W, appears most probably.

q Entropy, S, is defined by:

$$\emptyset S \equiv k_B \ln W \tag{3.2.1}$$

ü *W*: the number of configurations

$$\ddot{U}$$
 $k_B = 1.380 \times 10^{-23}$ J/K: Boltzmann constant

ü The state with the largest *S* appears most probably.

 \bigcirc Temperature, T, is defined by:

$$\emptyset \ 1/T = \left(\frac{\partial S}{\partial E}\right)_{other\ conditions} \tag{3.2.2}$$

ü The rate of entropy increase with increasing energy

Boltzmann distribution

q Boltzmann distribution: the number of particles with energy ε_i in a system with the fixed large number of particles N and fixed energy E at a temperature T

$$\emptyset \ n_i = \frac{N}{\sum_j \exp\left(-\frac{\varepsilon_j}{k_B T}\right)} \exp\left(-\frac{\varepsilon_i}{k_B T}\right) \propto \exp\left(-\frac{\varepsilon_i}{k_B T}\right)$$
(3.2.1)

 $\ddot{U} \exp\left(-\frac{\varepsilon_i}{k_BT}\right)$: Boltzmann factor

 $\ddot{\mathbf{U}} \sum_{j} \exp\left(-\frac{\varepsilon_{j}}{k_{B}T}\right)$: partition function

q The average, mean, or expected value of a physical quantity x of the particle, $\langle x \rangle$

$$\emptyset \langle x \rangle = \frac{\sum_{i} x_{i} n_{i}}{N} = \frac{\sum_{i} x_{i} \frac{N}{\sum_{j} \exp\left(-\frac{\varepsilon_{i}}{k_{B}T}\right)} \exp\left(-\frac{\varepsilon_{i}}{k_{B}T}\right)}{N} = \frac{\sum_{i} x_{i} \exp\left(-\frac{\varepsilon_{i}}{k_{B}T}\right)}{\sum_{j} \exp\left(-\frac{\varepsilon_{j}}{k_{B}T}\right)}$$
(3.2.2)

Lagrange multiplier -1

- The method of Lagrange multipliers: a strategy for finding local maxima/ minima of a function subject to equality constraints
 - Ø Find a point (a, b) where a function f(x, y) has a maximum/minimum with a constraint g(x, y) = 0
 - ü Define Lagrangian function: $L(x, y) = f(x, y) + \lambda g(x, y)$ (3.2.3)
 - § λ: Lagrange multiplier
 - ü The necessary conditions:

$$\S \frac{\partial L(a,b)}{\partial x} = \frac{\partial L(a,b)}{\partial y} = \frac{\partial L(a,b)}{\partial \lambda} = 0$$
 (3.2.4)

§ The point (a, b) is different from points where f(x, y) has maxima/minima without the constraint g(x, y) = 0

$$g(x,y) = 0$$
 but $\frac{\partial f}{\partial x} \neq 0$ and $\frac{\partial f}{\partial y} \neq 0$ at (a,b)

Lagrange multiplier -2

q The reason for (3.2.4) $\frac{\partial L(a,b)}{\partial x} = \frac{\partial L(a,b)}{\partial y} = \frac{\partial L(a,b)}{\partial \lambda} = 0$

$$\emptyset \frac{\partial L}{\partial \lambda} = \frac{\partial}{\partial \lambda} (f - \lambda g) = \frac{\partial \lambda}{\partial \lambda} g = g = 0$$

 \ddot{u} Identical to the condition g=0

$$\emptyset \frac{\partial L}{\partial x} = 0, \frac{\partial L}{\partial y} = 0 \quad \text{à} \quad \frac{\partial f}{\partial x} = \lambda \frac{\partial g}{\partial x}, \frac{\partial f}{\partial y} = \lambda \frac{\partial g}{\partial y}$$

$$\emptyset \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = \lambda \left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}\right) \tag{3.2.5}$$

 $\ddot{u} f = d_1, g = 0$ curves are parallel in the x-y plane

ü When (x, y) moves along g = 0, f does not change at a minimum/maximum (a, b)

§ à $f = d_1$, g = 0 are parallel at (a, b)

Red curve: the constraint g(x, y)= c. Blue curves: contours of f(x, y)=d.

Lagrange multiplier -3

q The meaning of λ

$$\emptyset\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = \lambda\left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}\right)$$
(3.2.5)

in The ratio of the change of f(x, y) to the change of g(x, y) by changing parameters (x, y), where f(x, y) and g(x, y) are not constant

- q Given conditions
 - \varnothing A system composed of the fixed number of N particles with a fixed total energy E
 - üN: very large
 - \emptyset Energy of a particle: ε_i (i = 0, 1, 2, ...)
 - Ø The number of particles having an energy ε_i : n_i
- q The total number of particles

$$\ddot{\mathbf{U}} \, N = \sum_{i=0}^{\infty} n_i \tag{3.2.6}$$

q The total energy of the system

$$\ddot{\mathsf{U}} E = \sum_{i=0}^{\infty} n_i \varepsilon_i \tag{3.2.7}$$

§ The total energy = sum of (energies of the particles)*(number of the particles)

q The number of configuration of the system $(n_0, n_1, n_2, ...), W$:

$$\emptyset W = \frac{N!}{n_0! n_1! \ n_2! \dots} \tag{3.2.8}$$

q The entropy of the system, S:

$$\emptyset S = k_B \ln W = k_B \ln \frac{N!}{n_0! n_1! n_2! \dots} = k_B (\ln N! - \sum_i \ln n_i!)$$
 (3.2.9)

q The Stirling's approximation:

$$\emptyset \ln N! \cong N \ln N - N \tag{3.2.10}$$

q Using the Stirling's approximation (3.2.10), ln W in (3.2.9) becomes

$$\emptyset \ln W \cong N \ln N - N - \sum_{i=0}^{\infty} (n_i \ln n_i - n_i)$$
 (3.2.11)

$$= N \ln N - \sum_{i=0}^{\infty} n_i \ln n_i - [N - \sum_{i=0}^{\infty} n_i] = N \ln N - \sum_{i=0}^{\infty} n_i \ln n_i$$
 (3.2.12)
(3.2.6): $N = \sum_{i=0}^{\infty} n_i$

- q We will obtain the conditions for the largest $\ln W \ge d \ln W = 0$
- q The total number of particles and the total energy of the system are fixed:

$$\emptyset$$
 (3.2.3) $N = \sum_{i=0}^{\infty} n_i$ à $dN = \sum_{i=0}^{\infty} dn_i = 0$ (3.2.13)

$$\emptyset (3.2.4) E = \sum_{i=0}^{\infty} n_i \varepsilon_i \qquad a \qquad dE = \sum_{i=0}^{\infty} \varepsilon_i dn_i = 0 \qquad (3.2.14)$$

q Using (3.2.24), the change in the logarithmic number of microstates, $\ln W$, is

$$\emptyset \operatorname{d} \ln W = \operatorname{d}(N \ln N - \sum_{i=0}^{\infty} n_i \ln n_i)$$

$$= -(\operatorname{d}N + N \operatorname{d}\ln N) - \sum_{i=0}^{\infty} (\operatorname{d}n_i \ln n_i + n_i \operatorname{d}\ln n_i)$$

$$= -\sum_{i=0}^{\infty} \left(\operatorname{d}n_i \ln n_i + \frac{n_i \operatorname{d}n_i}{n_i}\right) \qquad \text{if } \operatorname{d}N = 0, \operatorname{d}\ln N = 0, \operatorname{d}\ln n_i = \frac{\operatorname{d}n_i}{n_i}$$

$$= -\sum_{i=0}^{\infty} (1 + \ln n_i) \operatorname{d}n_i$$

$$\cong -\sum_{i=0}^{\infty} \ln n_i \operatorname{d}n_i \qquad (3.2.15)$$

 \bigcirc Applying the method of Lagrange multiplier to obtain the maximum $\ln W$, which indicates the most probable state, under conditions of fixed N and E

$$\emptyset L = \ln W + \alpha N + \beta E$$

 $\ddot{\mathbf{u}}\alpha$, β : Lagrange multiplier, constant

$$\emptyset dL = -\sum_{i=0}^{\infty} (\ln n_i + \alpha + \beta \varepsilon_i) dn_i$$
 (3.2.16)

$$\emptyset dL = \sum_{i=0}^{\infty} (\ln n_i + \alpha + \beta \varepsilon_i) dn_i = 0$$
 (3.2.17)

$$\emptyset \ln n_i + \alpha + \beta \varepsilon_i = 0 \tag{3.2.18}$$

q (3.2.18) $\ln n_i + \alpha + \beta \varepsilon_i = 0$ provides the form of the Boltzmann distribution

$$\emptyset \ n_i = \exp(-\alpha - \beta \varepsilon_i) = \exp(-\alpha) \exp(-\beta \varepsilon_i) = A \exp(-\beta \varepsilon_i)$$
 (3.2.19)

 $\ddot{\cup}$ $\ln n_i$ and ε_i are balanced to maximize W at constant N and E

q Determining the constant β

$$\ddot{\mathbf{u}} \ln n_i + \alpha + \beta \varepsilon_i = 0$$

$$\ddot{\cup} n_i \ln n_i + \alpha n_i + \beta n_i \varepsilon_i = 0$$

$$\ddot{\mathbf{U}} \; \Sigma_i n_i \ln n_i + \alpha \Sigma_i n_i + \beta \Sigma_i n_i \varepsilon_i = 0 \tag{3.2.20}$$

 \emptyset Using (3.2.9) $\ln W \cong N \ln N - \sum_{i} n_{i} \ln n_{i}$

$$\ddot{U} N \ln N - \ln W + \alpha \Sigma_i n_i + \beta \Sigma_i n_i \varepsilon_i = 0$$

 \emptyset By multiplying Eq. (3.2.21) by k_B

$$\S k_B N \ln N - k_B \ln W + \alpha k_B \Sigma_i n_i + \beta k_B \Sigma_i n_i \varepsilon_i = 0$$

Ø From the definition of entropy (3.2.9) $S = k_B \ln W$, (3.2.21) $k_B N \ln N - k_B \ln W + \alpha k_B \Sigma_i n_i + \beta k_B \Sigma_i n_i \varepsilon_i = 0$ becomes

$$\ddot{U} k_B N \ln N - S + \alpha k_B N + \beta k_B E = 0$$

$$\ddot{U} S = k_B N \ln N + \alpha k_B N + \beta k_B E \tag{3.2.22}$$

 \emptyset Differentiation of (3.2.22) by E

$$\emptyset \frac{\mathrm{d}S}{\mathrm{d}E} = \frac{\mathrm{d}}{\mathrm{d}E} (k_B N \ln N + \alpha k_B N + \beta k_B E) = \beta k_B$$
 (3.2.23)

 \emptyset From the definition of the temperature, T, $\frac{dS}{dE} = \frac{1}{T}$

$$\ddot{\cup} \beta k_B = \frac{1}{T} \Rightarrow \beta = \frac{1}{k_B T} \tag{3.2.24}$$

q Determination of the factor A

Ø Substituting (3.2.35)
$$\beta = \frac{1}{k_B T}$$
 into (3.2.29) $\ln n_i + \alpha + \beta \varepsilon_i = 0$

$$\ddot{\mathbf{u}} \ln n_i + \alpha + \varepsilon_i / k_B T = 0 \tag{3.2.36}$$

$$\ddot{u} n_i = \exp(-\alpha) \exp\left(-\frac{\varepsilon_i}{k_B T}\right) = A \exp\left(-\frac{\varepsilon_i}{k_B T}\right)$$
 (3.2.37)

Ø Substituting (3.2.37) into (3.2.17) $N = \sum_{i} n_{i}$

$$\ddot{U} N = \sum_{i} A \exp\left(-\frac{\varepsilon_{i}}{k_{B}T}\right)$$

$$\ddot{U} A = \frac{N}{\sum_{i} \exp\left(-\frac{\varepsilon_{i}}{k_{B}T}\right)}$$
(3.2.38)

q Boltzmann distribution

$$\emptyset \ n_i = \frac{N}{\sum_j \exp\left(-\frac{\varepsilon_j}{k_B T}\right)} \exp\left(-\frac{\varepsilon_i}{k_B T}\right) \propto \exp\left(-\frac{\varepsilon_i}{k_B T}\right)$$
(3.2.39)

Why $n_i \propto \exp\left(-\frac{\varepsilon_i}{k_B T}\right)$?

- q The probability where a state $(n_0, n_1, n_2, ...)$ appears: proportional to the number of configuration, $W = \frac{N!}{n_0!n_1! \; n_2!...}$
- Q The entropy is the natural logarithm of the number of configuration: $S = k_B \ln W$
 - \emptyset à The probability should proportional to $\exp(S/k_{\rm B})$
- Q When many particles have the same energy ε_i , the number of configuration decreases: $d \ln W = -\sum_{i=0}^{\infty} \ln n_i dn_i$
- q The Lagrange multiplier $\beta = \frac{1}{k_B T}$: the ratio of the changes in $\frac{S}{k_B} = \ln W$ to $E \ge \exp\left(-\frac{\varepsilon_i}{k_B T}\right)$: how W decreases by E change by ε_i increase \ge proportional to n_i

Mineral Physics I Chapter 3. Lattice vibration Section 2. Boltzmann distribution

End

